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Résumé : Dans cet article une synthèse sur les méthodes de calcul pour la prédiction des Surfaces 
Equivalentes Radar (SER) et des interactions antennes-structures est présentée. Dans une première partie 
les techniques de calcul des SER sont considérées. Une liste de solveurs en régime harmonique et 
stationnaire est donnée avec leurs performances en place mémoire et temps de calcul. Les méthodes 
d’éléments finis de frontière, de différences finies en régime temporel, d’éléments finis volumiques ainsi 
que les techniques d’hybridation et de factorisation sont passés en revue. En particulier, les performances 
exceptionnelles de la méthode des multipôles rapides comparées à celles de la méthode classique des 
moments sont mises en évidence. Nous avons aussi mentionné les travaux de recherche récents sur les 
techniques numériques conduits en France. Les méthodes asymptotiques sont surtout traitées dans la 
seconde partie de cet article consacrée à l’interaction antennes-structures. Après une courte description de 
l’évolution historique des outils de calcul fondés sur la Théorie Géométrique de la Diffraction, les 
avantages et inconvénients des différentes méthodes de représentation de la géométrie et de recherche des 
rayons sont discutés. Puis une liste des problèmes non résolus et les axes de recherche futurs sur les 
méthodes asymptotiques sont présentés ainsi qu’un exemple de code de calcul fondé sur la Théorie 
Uniforme de la Diffraction. Dans la conclusion quelques nouveaux sujets de recherche tels que les 
éléments finis d’ordre supérieur définis sur des surfaces décrites par des B-Splines et les macro-fonctions 
de base contenant une information sur la phase ou dérivées de solutions analytiques ou asymptotiques 
sont brièvement introduits. 

Abstract : In this paper, a review is presented on computational methods for the prediction of Radar Cross 
Sections (RCS) and antenna-platform interactions. In a first part the techniques for RCS computations are 
considered. A list of frequency and time domain solvers for the Maxwell’s equations are given with their 
performances in memory requirements and run-time. Boundary Elements Methods, Finite Difference 
Time Domain Methods, Finite Elements – Finite Volume Methods, Hybridization and Factorization 
Techniques, are reviewed. Especially the exceptional performances of the Fast Multipole Method 
compared to those of the classical Moment Method are highlighted. We have also made mention of some 
recent research work on numerical techniques conducted  in France. Asymptotic methods are mainly 
discussed in the second part of this article devoted to antenna-platform interactions. After a brief 
description of the historical evolution of Geometrical Theory of Diffraction tools for antenna analysis and 
design, the advantages and drawbacks of different techniques for generating the geometry and searching 
the rays are discussed. Then a list of unsolved problems and lines of future research on asymptotic 
techniques are presented together with an example of a computer code founded on the Uniform Theory of 
diffraction. In the conclusion some new research topics such as higher order finite elements defined on 
surfaces represented by B-Splines and macro-basis functions containing information on the phase or 
derived from analytical or asymptotic solutions are briefly introduced. 
 
 



1 – Introduction 
         Computational electromagnetics constitutes nowadays a wide domain of research 
and development (R & D) in the world in which the chief actors are the Universities and 
the research centres mostly involved  in the conception of new algorithms, the industries 
active in the development of softwares adapted to their need assisted by software 
development companies and some SME highly specialized in a particular technique. 

From this R & D activity throughout the world emerges every year an enormous 
number of publications on new algorithms most of which having only a short duration 
of live while a few of them constitute a major advance which will profit by a long term 
development. 

In this article we limit our state of the art review to this last category. However 
some new lines of research which have not yet passed through the whole chain of 
investigation running from the research state to the industry will also be given. 

Computational methods can be classified in two categories : numerical methods of 
resolution of the Maxwell equations called also exact methods and asymptotic high 
frequency methods which are only valid when the characteristic dimensions of the 
scatterer are large compared to the wavelength. 

Numerical methods are limited by the electrical size of the body measured in 
wavelengths. Thus, as the frequency is increased, the computer storage or the CPU time 
required to set up and solve the Maxwell equations becomes prohibitive at some 
frequency. 

 In the past for targets in and just above resonance, numerical techniques were 
used. For radar targets in the microwave band, asymptotic high frequency methods 
formed the basis for computation. But owing to the rapid progress in numerical 
techniques, especially during the last fifteen years, their limit of applicability has been 
shifted to higher frequencies and include now a large part of the diffraction problems 
encountered at radar frequencies such as radar cross section (RCS) computation, 
electromagnetic compatibility applications and antenna design. 

However at the same time the size and complexity of objects have also augmented 
especially in the field of radiocommunications but also in the field of radars where 
objects which are both complex in shape and partially composed of lossy dielectric or 
anisotropic material are potential radar targets. While most of these objects can now be 
treated by a combination of numerical techniques, especially for the prediction and 
analysis of their radar cross sections, the antenna-platform interaction, especially on 
large platforms like airplanes, spacecrafts and ships, fall still outside their domain of 
applicability. For this reason, we have divided our review in two parts : the prediction of 
radar cross sections where numerical methods predominate and the prediction of 
antenna-platform interactions where asymptotic methods remain absolutely necessary. 
These two subjects are treated respectively in chapters 2 and 3. Of course, numerical 
methods are also of great importance in antenna analysis and design and some first 
applications of these methods to antennas mounted on a spacecraft  have been reported 
recently [1]. New promising algorithms are also described in this special issue [2].  But 
since most of the numerical techniques presented in chapter 2 concerning RCS 
predictions are also applied in antenna analysis, these methods will not be presented 
again in the chapter 3 devoted to antenna-platform interactions. Conversely, high 
frequency methods [3] are still of importance for RCS computation especially at higher 
frequencies. Moreover, they give a physical insight in the diffraction processes which 
can be useful in the design of low RCS targets. Again, since the corresponding software 
tools employ the same techniques for the geometrical modelling of the surfaces and for 
ray searching as those discussed in the antenna-platform interaction part, we will limit 



our analysis in the RCS part to some fundamental discussions on asymptotic methods 
and especially on the role of the caustics which gives greater importance to the current-
based methods to the detriment of the field based methods in RCS computation. 

It was impossible to present in detail the different numerical methods mentioned in 
our review. Instead we have given the references of some main articles where the 
information can be found. We have also quoted the work on numerical techniques of 
French researchers in applied mathematics which is not so well known by the 
electromagnetic community. 

 
2 – Prediction of Radar Cross Section : synthesis on numerical 

methods  
            Numerical methods in electromagnetic have increased in efficiency in the last 
decades. These techniques are nowadays the most frequently used for RCS, CEM 
applications and antenna design. The choice of the methods to be used depends on : 

• Time discretization : time harmonic or time domain formulations 
• Spatial discretization : finite differences / volumes or elements methods 
• Solver : explicit, direct or iterative 
• Sensors (emitters/receivers) : monostatic, bistatic, … 
• Media : in/homogeneous, an/isotropic, dispersive 
• Computer : distributed / shared memory, … 
• The complexity of the problem to solve : multiscale, large body, … 
 
In this section, we first consider three main families of numerical methods : the 
boundary elements methods (BEM), the finite difference time domain methods (FDTD) 
and the finite elements/volumes methods (FEM/FVM ). To solve complex problems 
(large body and many apertures), we present some hybridization and factorization 
techniques. Asymptotic methods are also briefly discussed. 
 
2.1 - Boundary Elements Methods (BEM)  

     These methods are derived from the discretization of the Maxwell integral equations. 
Thirty years ago, appeared the  Method of Moments (MoM) (Harrington [4]) : from 
harmonic domain integral equations we obtain an algebraic system constituted by a 
complex dense matrix, right hand sides for each incident waves and currents density as 
unknowns. The most common formulation is the well known Electric Field Integral 
Equation (EFIE) using the Hdiv “edge” boundary elements on triangular meshes (Rao 
Wilton Glisson basis functions [5]). A good accuracy of the solutions could be obtained 
by taking the length of each edge of elements of the order 7/λ . Some extensions to 
Magnetic Field Integral Equation (MFIE) and Combined Field Integral Equation (CFIE) 
could be used to solve problems constituted by homogeneous domains of media, but 
these formulations are less accurate than EFIE and require at least a 10/λ mesh size. 
However the CFIE is more stable and remedy to the problem of spurious frequencies. 

Direct solvers : 
Most of the industrials BEM codes use direct solvers (LU factorization) on parallel 
machines and are now very efficient for problem sizes less than N=200, 000 unknowns. 
The limitation is due to memory requirements of )( 2NΟ  to store the matrix (in core or 

out of core) and CPU of )( 23 sNN +Ο  to solve s linear systems (s number of sources). 
 



Iterative solvers : 
Iterative solvers (conjugate gradients, GMRES, QMR) can reduce the CPU to 

)( 2spNΟ where s is the number of sources and p is the number of iterations, but matrix 
products are costly. To decrease the cost of matrix products, recently towards the years 
1994-95 Multi-Level Fast Multipol Algorithm (MLFMA) using the CFIE formulation 
(Chew [6], [7]) leads to CPU of )( 2NLogspNΟ and memory storage of )( LogNNΟ . 
Problem sizes of more than N=10 millions unknowns could be now available for RCS 
problems (until to S and X bands). 
The following table shows a comparison between MoM and FMM in case of a bistatic 
perfectly conducting sphere (report made by EMSS from ESA [1]).   

Tableau 1 : comparison between FMM (CFIE  without preconditioning,, mesh in 10/λ  ) and MoM. 
CPU time is obtained with an AMD Opteron 248, 2.2 GHz 

Sphere 
diameter 

Number of 
Unknowns 

MLFMA 
memory 

MLFMA 
run-time 

MoM 
memory 

 MoM run-
time 

2.566λ  6,372 41.4 Mbytes 83.0 sec 620 Mbytes 655 sec 
5.132λ  25,050 160.5 Mbytes 355.9 sec 9.35 Gbytes 4.74 h 
10.264λ  100,005 636.3 Mbytes 0.46 h 149 Gbytes not solved 
20.528λ  398,304 2.475 Gbytes 2.61 h 2.31 Tbytes not solved 

 
The use of preconditioning (SPAI for example) often decreases run-time and gives a 
convergence of the solutions. In case of monostatic or multi-sources problems (when 
the number of sources s is large), efficiency could be increased by using block multi 
right hand side iterative solvers as Block GMRES, MGCR (Sylvand [8], Simon [9]) or 
interpolation techniques (Carayol [10]). Mer [11] uses FMM methods in Desprès 
Integral Equations to obtain accurate solutions.  Meanwhile to improve FMM methods,  
more evaluations have to be done in terms of accuracy for cavities and bodies including 
absorbing material. 
 
Time domain :  

Time domain boundary element methods (BEMTD) has been developed during the 
ninety’s ([12], [13]). This method uses mixed finite elements to compute potentials and 
an implicit  stable temporal  scheme . At each time step, it needs to solve a sparse linear 
system (conjugate gradient or direct solver) and a matrix convolution. BEMTD are well 
suited for large band problems and,  to increase the efficiency, FMM techniques could 
be used during the matrix convolution (see Terrasse [14]).  
 
2.2  - Finite Difference Time Domain Methods (FDTD)  

These methods are derived from the discretization of the time domain Maxwell 
equations on structured meshes. At each time, we obtain a fully explicit  scheme (Yee 
scheme [15]) allowing to compute quite easily several millions of unknowns 
(electromagnetic fields) . We find many applications in CEM and in computation of 
fields in heterogeneous media. The main drawbacks of FDTD is the accuracy of the 
solution : firstly, absorbing boundary condition for the outer boundary in free space 
gives spurious solutions if the distance between this boundary and the body is too small, 
and secondly, stair cases approximation of the body produces dispersive solutions.  
Recently Béranger in 1994 [16], introduced Perfectly Matched Layer (PML) which 
removes the drawbacks of absorbing boundary conditions. To remove the stair cases 



approximation, a coupling between FDTD (in free space) and FEM or FVM (a region 
around the body discretized with tetrahedrons, see next paragraph) could be used. 
 
2.3 - Finite Elements/Volume Methods (FEM/FVM)  

These methods are derived from the discretization of the Maxwell equations on 
unstructured meshes (tetrahedrons, prisms, hexahedrons).  
 
Harmonic time domain :  

FEM are based on Hcurl “edge” elements (Nédélec basis functions [17]). These 
elements are free of spurious modes and lead to the correct field continuity properties at 
the interfaces between different media particularly well suited for the modelling of 
inhomogeneous anisotropic scatterers. To model homogeneous regions and particularly 
the unbounded free-space, integral equations (BEM) have been combined to FEM and 
the compatibility between Hcurl end Hdiv elements has been established. The combined 
equations lead to solve a quite-sparse linear system and direct and/or iterative solvers 
could be used (see [18] for some applications). 

Time domain : 

FVTD was first introduced in electromagnetic by Shankar in 1989 [19] and was derived 
from codes used in CFD (Euler equations), but solutions were too dissipative. Later on 
more accurate explicit high order schemes have appeared ( [20]) .  
Concerning FETD (mixed finite elements) or DGTD (Discontinuous Galerkin elements) 
[21], [22] we introduce a high order non dissipative  explicit scheme, with very accurate 
solutions for long time  simulation. To reduce the free-space region, PML techniques 
could also be combined with this time domain method. 
 
2.4 - Hybridization / factorization  

Coupling together different methods is a good way to reduce computer requirements in 
terms of memory and CPU time for solving multiscale and complex structures for 
electromagnetic problems : large body with cavities, protuberances, different dielectric 
materials, … It consists first in separating the global problem in smaller local problems, 
then in computing partial solutions with an appropriate method for each sub domain, 
and at the end in summarizing the solutions. 
Collaborative simulations are also a good application for coupling techniques : the 
electromagnetic simulations of Antenna or RCS contributors must combine models 
under the responsibility of various partners : i.e. antennas developed by an electronic 
systems manufacturer, missiles by an weapon manufacturer, engine by an engine 
manufacturer. The aircraft manufacturer must be able to gather these models to get the 
integrated behaviour of all sub-systems.   
We find a discussion and a full description of some hybridization and factorization 
techniques in [23], [24]. These techniques have been first introduced in [25] and further 
reported in [26]. 
 
Factorization :  

It consists of a matched domains decomposition separated by interfaces. Each domain is 
reduced to operators on the interfaces by using a suitable numerical method. Then a 
gathering of operators leads to the final solutions. If the factorized operators process on 



the same basis functions than the solver, factorization is only an algebraic manipulation 
and does not provide any loss of accuracy.  
Factorization is an efficient method and we obtain a reduction of cost from n to n² 
where n is the number of sub domains. Some limitation of this method concerns the 
decomposition of unbounded regions and difficulties  to model interfaces in the free-
space,  leading to spurious solutions. 
 

Hybridization : 

We decompose the global problem in two sub problems : In the case of apertures in a 
body the first problem called short circuited problem contains the body without 
apertures (for an air duct the aperture or interface will be the cross section of the air 
intake); we obtain the radar cross section RCS1,  the source currents Js and receiver 
currents Jr at the interface. The second problem called the local problem contains the 
apertures and near regions around apertures;  we use -Js currents as sources at interface 
and solve the Ms currents at the interface. Then we compute an integral reaction at 
interfaces between Ms currents inducted by emitters from local problem  and Jr currents 
inducted by receivers. Finally we summarize RCS1 and integral reaction to obtain an 
approximate RCS of the global problem. 
Hybridization is well suited for the computation at high frequency when the apertures 
size is > 5 wavelength.  The short circuited problem could be solved by an high 
frequency method : asymptotic or FMM for example, and the local problems could be 
solved by numerical methods adapted to the apertures : BEM for example. 
Application to the  channel mock-up at 7GHz (See figure 1). The measurements have 
been done by ONERA   

 
 
                                             Figure 1 : Perspective of the channel mock-up 
                                                                         Perspective de la maquette du conduit 
 
The problem is decomposed in 9 domains : outer region (cylinder) is solved by the 
method of asymptotic currents (MoASC in Dassault Aviation Spectre code) and the 
inner region (6 inlet sections and 2 engine wheels)  is solved by factorization (using 
BEM methods in Dassault Aviation  Spectre code).    



 
 

Figure 2 :  RCS of the channel mock-up as a function of θ for 7 GHz 
                                        SER de la maquette du conduit en fonction de θ pour 7 GHz 
 
Figure  2 shows a comparison of monostatic near field RCS in polarization θθ  function 
of  θ  (x,z angle, where z is along the duct, °= 90θ  for an incident wave entering in the 
duct and °= 180θ  for an incident wave perpendicular to the outer cylinder) : red 
crosses for measurements, blue line for reference factorization method (9 BEM 
methods, involving 500,000 unknowns), cyan line for hybrid method (1 MoASC + 8 
BEM methods involving 200,000 unknowns) and green line for factorization method (9 
BEM methods with an truncated outer cylinder involving 200,000 unknowns). We 
observe a very good agreement between all solutions except for the factorization with a 
truncated cylinder when °> 160θ .  
 

2.5 – Asymptotic methods 

        Geometrical Optics (GO) predicts an infinite value for the RCS of a flat plate 
of finite dimensions. This wrong result could be explained by the fact that the rays 
reflected by the surface of the plate are all parallel and therefore pass through a point 
caustic at infinity. 

A more refined analysis consists in observing that in the vicinity of the shadow 
boundaries of the reflected GO field, the rays diffracted by the rim of the plate lie in the 
transition regions of the reflected field. At large distance from the plate, the beam of 
rays reflected by the plate is entirely situated in the transition zones and GO is no longer 
valid and must be replaced by the Uniform Theory of Diffraction (UTD). It can be 
shown that by adding to the reflected field at an observation point located at finite 
distance, the field diffracted by the rim given by UTD and by letting the observation 
point tend to infinity in the direction of reflection, the terms which do not satisfy the 
Sommerfeld radiation condition strike out and the rest of the formula gives the correct 
result. This procedure which involves a passage to a limit is not easy to apply to a 
general polygonal plate. Moreover, the same problem arises when the plate is slightly 
bent in which case the derivation of the correct result is much more complicated. As a 



consequence, field-based methods are not suitable for RCS computations of flat or 
quasi-flat plates. An easier approach consists in determining first the currents on the 
plate and then in calculating the fields radiated by these currents. This technique which 
is called a current-based method is widely used in RCS computation of complex targets 
composed of curved and quasi-flat surfaces like airplanes, ships and tanks. In the past 
most of the codes used the Physical Optics (PO) approximation for the determination of 
the currents associated with the Physical Theory of Diffraction (PTD) giving a 
correction to PO when sharp edges are present. Since PO considers only the currents on 
the illuminated part of an object, this method is not valid for large bistatic angles. It 
gives also inaccurate results for the monostatic RCS for nose on illumination of an 
airplane or a missile. The asymptotic current method which consists in completing the 
GO contribution to the currents on the surface by transition regions currents close to the 
light shadow boundary and by the creeping wave current in the shadow region, permits 
to overcome the shortcomings of PO. The most recent versions of asymptotic methods 
codes for RCS computation integrate the asymptotic current method, the rays being 
determined by a shooting of rays procedure described in the antenna-platform 
interaction part of this article. 

 
3 - Antenna-platform interactions 

          3.1 - Introduction 

 The interactions of an antenna with its platform or with  other surrounding objects 
is a fundamental problem which arises in various domains like radars mounted on an 
air-plane or a ship, terrestrial or satellite radiocommunications and electromagnetic 
compatibility between equipments. 

This problem differs from the computation of the Radar Cross Section (RCS) by 
the fact that the source or reciprocally the observation point, are at finite distance from 
the platform supporting the antenna whereas, for the RCS, the object is illuminated by a 
plane wave and the scattered field is observed at infinity. In addition practically all 
algorithms which have been developed in the past have been limited to monostatic 
configurations, the emitter and the receiver being superposed whereas the antenna-
platform interaction is essentially bistatic. These differences are at the origin of the 
development of algorithms which take into account the near field interactions and which 
are specifically tuned to antenna analysis and design. 

Generally, the modelisation of an antenna in its environment implies the use of 
several methods depending on the size and the complexity of the structure of the 
antenna itself and on the natural or artificial obstacles which intercept the radiated field. 

In this review, we limit our investigations to artificial man-made obstacles 
constituted by the platform supporting the antenna : mast, tower, building, terrestrial 
vehicle, ship, spacecraft and aircraft. In addition to the deformation of the radiation 
pattern of the antenna (amplitude, phase, polarisation, directivity), the surrounding 
obstacles may also enhance or reduce the coupling between antennas located on the 
same platform. It is well known that the electromagnetic characteristics of an antenna 
can be strongly modified and its performance reduced by the platform it is mounted on. 
Since most antennas are not designed for a particular platform and a specific location on 
it, it was important to develop appropriate software to compute the interaction of the 
antenna with the platform as well as with other neighbouring antennas. 

The computational methods which have been developed for the prediction of 
antenna-platform interactions can be classified in two main categories : the numerical 
methods and the asymptotic high frequency methods. 



The numerical methods are mainly used for the modelisation of the antenna itself. 
The different techniques are the same as those described in part I for the computation of 
the RCS. Despite the rapid augmentation of their performances during the last fifteen 
years, due mainly to the Fast Multipole Method, the treatment of the interactions 
between an antenna and its platform has only started very recently [1] for medium sized 
platforms and antennas defined by their free space radiation diagram. For complex 
antennas mounted on a platform which is very large compared to the wavelength or for 
an array of elements conformed to the surface of an aircraft, the size of the problem is 
still too big for strictly numerical methods. 

The asymptotic high frequency methods used in antenna analysis and design 
comprise principally the Geometrical Optics (GO) associated to the Geometrical Theory 
of Diffraction (GTD) which give directly the scattered field along rays and the 
asymptotic current method which give the currents on the surface of the scattering 
object. In connection to these methods, other techniques have been developed mainly to 
remedy locally to some of their insufficiencies such as the Uniform Theory of 
Diffraction giving correctly the field in the transition regions close to the shadow 
boundaries, the Spectral Theory of Diffraction allowing to extend the theory to non 
local plane waves, the Incremental Theory of Diffraction valid in the vicinity of an edge 
and verifying the boundary conditions, the Equivalent Edge Currents giving the field on 
a caustic of the edge diffracted rays. On account of the bistatic behaviour of the 
interaction between an antenna and the surrounding structures, techniques like the 
Physical Optics (PO) approximation which consists in calculating the currents on the 
illuminated region of an object using the GO field and the Physical Theory of 
Diffraction (PTD) giving a correction to the field radiated by these currents due to the 
existence of fringe currents close to the edge of a wedge, which are both very important 
in RCS computations, are of less importance here. An exception is the computation of 
the radiation pattern of reflector antennas where GO and GTD are not valid owing to the 
presence of a caustic of the reflected field and of the field diffracted by the rim, at 
infinity. 

On the other hand, the asymptotic current method which gives the currents on both 
the illuminated region and the shadowed region by taking into account the effect of  
creeping waves, play an important role, especially in hybrid methods combining a 
numerical technique with asymptotic solutions. 

In section 3.2, after a brief description of the historical evolution of GTD tools  for 
antenna analysis and design, some advantages and drawbacks of different techniques for 
generating the geometry and searching the rays, are discussed.  

In section 3.3, we present a list of problems which remain to be solved. These 
problems will be the basis from which different lines of future research and 
development will be defined. 

In section 3.4, a typical UTD code for antenna analysis is presented with some 
comments and illustrations on the geometrical modelling of the platform, the ray 
searching technique and the types of outputs provided. 
     
 
3.2 – Historical development and state of the art of GTD tools for the computation of 

antenna-platform interactions 

At high frequencies, or more precisely when 1>>kD  where k  is the wave number 
( )λ

π2=k and D  is a characteristic dimension of the scatterer, the reflected GO field 

constitutes the dominant contribution to the scattered field. It is the first term of an 



asymptotic expansion in entire or fractional powers of k
1  and is of order zero with 

respect to this parameter. The next term, of order 2
1−

k  corresponds to the field 

diffracted by a sharp wedge. Creeping waves which are of order 3
1−

k  are generally a 
weaker contribution owing to the exponential decay along their propagation path. 
However this argument is only valid for RCS computation in a monostatic diffraction 
process since there, the creeping waves travel a long distance because they have to 
circumvent the object in order to shed energy in the direction opposite to the direction 
of propagation of the incident wave, unless it is diffracted by an edge and consequently 
of lower order. In the case of an antenna interacting with  a platform, having curved 
surfaces, creeping waves may exist which travel on a very short distance. In this case 
their contribution can no longer be neglected. Since the beginning of the development 
of codes for antenna analysis and design the effort has been put on these three 
contributors. 

For computing the GO field reflected by curved surfaces, it is necessary to know 
the principal radii of curvature and the principal directions of the surface at the point of 
reflection. Since the curvatures depend on the second  derivatives of the surface we see 
that the geometrical modelisation of the latter is submitted to completely different 
constraints compared to numerical methods. In the first codes which have been 
constructed (code SARGASSES [27] from THALES, France, code NEC-BSE [28] from 
University of Ohio, USA), the structures were represented with the aid of elementary 
analytical surfaces (cylinder, cone, ellipsoid, flat plates, etc…). The rays were searched 
by solving the equations verified by the co-ordinates of the interaction points, obtained 
by applying the Fermat principle. The knowledge of the rays and of the surface 
characteristics at the interaction points allows one to calculate the reflected and 
diffracted field. In order to make this operation easier, MOTHESIM has developed the 
library PROMETHEE [29] which is composed of modules each of which treating a 
specific interaction (reflection, edge diffraction, creeping waves) and having general 
inputs and outputs allowing them to be used at any place in the interaction chain along a 
ray trajectory. For instance the same module corresponding to a reflection is used at 1Q  
and 3Q  in the chain of interactions of figure 3. These modules which take also into 
account the necessity to use specific asymptotic solutions in the vicinity of the shadow 
boundaries given by the Uniform Theory of Diffraction, have been integrated in the 
software SARGASSES at the end of the eighty’s. 

 

Figure 3 : Chain of interactions comprising reflections, edge diffractions and creeping 
                         waves 
                        Chaîne d’interactions comprenant des réflexions, des diffractions et des ondes 

rampantes 



 
The geometrical modelisation of a complex object (an air-plane for instance) with a 
collection of analytical surfaces is an expensive operation (3 weeks of an engineer) and 
its accuracy is difficult to control. For this reason, this technique has been progressively 
replaced by CAD procedures which have been very soon installed on  workstations. 

The second version of SARGASSES makes use of curved surfaces represented by 
NURBS (Non Uniform Rational B-Spline). The rays are still searched directly by 
applying Fermat’s principle and solving the corresponding equations on the Bésier 
squares. This is however a very heavy procedure, especially when applied to double 
interactions (double reflections, reflection-diffraction) on a general complex object 
without a first trial of the rays. For a systematic search of ray trajectories with three 
interactions, the computer time needed nowadays remains still too long and unfeasible 
on a workstation. 

In order to overcome this difficulty, researchers turned towards a new technique 
called  “shooting of rays”  which consists in emitting a ray or a thin pencil of rays in a 
given direction and in following its path by applying at each interaction point with a 
surface, the laws of reflection. By emitting rays in all directions and selecting those 
which reach a small volume around the observation point, it is possible to determine all 
simple and multiple reflected rays. This procedure applies also to the diffraction by an 
edge. In this case new elementary pencils of rays are emitted from the interaction point 
on an edge, in the direction of the generatrixes of the Keller cone. This procedure is 
used in the software SPECTRE [30] from Dassault Aviation for complex objects (air-
planes) modelled geometrically with the CAD tool CATIA. 

The shooting of rays is particularly rapid for searching multiply reflected rays on 
an object the surface of which is modelled by plane facets, since in this case the 
divergence per unit length of a pencil of rays remains constant so that the global 
divergence can be easily controlled. In the case of curved surfaces however, the 
divergence of a pencil of rays can change very rapidly, especially close to shadow 
boundaries as illustrated on figure 4. 

                                Figure 4 : Divergence of the reflected rays near the shadow boundary 
                                                    Divergence des rayons réfléchis près de la frontière d’ombre 
 
In this case, it is necessary to reduce  drastically the width of the pencil of rays in some 
directions of space and start again the shooting of rays procedure until a pencil 
sufficiently thin reaches the observation point. This difficulty which leads to much 
longer CPU time is at the origin of the preference accorded in the ray search tools to 
facetted surfaces. An example is the code AAPG 2000 (Aircraft inter-Antenna 
Propagation with Graphics) de Matis Inc. in collaboration with IIT Research Institute, 
USA [31] which operates on a three-dimensional platform-surface representation, 
consisting of a collection of plane triangular facets. The ray searching procedure starts 
with a set of initial trial paths which can be obtained by the shooting of rays technique. 



In a second step each of the initial paths is optimized by an iterative algorithm which 
searches for an extremum of the curve length. The geometrical parameters of the true 
surface which enter in the UTD formulas are evaluated via a double spline interpolation, 
one for smoothing the field of tangent vectors and the other for smoothing the field of 
normals in the vicinity of the interaction point for reflection or edge diffraction and 
along the facetized surface path for creeping rays. 

The computation of the geometrical data of the true non facetted surface at the 
interaction points of the ray path with the surface is essential for applying the UTD 
formulas. Otherwise the information concerning the crossing of a caustic of reflected or 
edge diffracted rays would be lost and the phase shift of 2

π  (in the time convention 

)exp( tiω ) affecting a wave crossing a caustic would not be taken into account. There are 
still some GTD codes in France and elsewhere which do not take care of this problem. 

It is also important to mention that the number of facets needed for the geometrical 
modelling of a surface is not independent of the frequency and augment with the latter. 
The criterium which is usually adopted is that the maximum distance between the 
surface and the facet being less than 16

λ  where λ is the wavelength. When a fixed 

sampling is used at higher frequencies, a “facet noise” appears in the radiation diagram. 
Another GTD code which operates on surfaces represented by plane triangular 

facets coupled with a shooting of rays procedure has recently been developed in France 
by ONERA (code FERMAT [32]). This code is well adapted to very large scenes  
composed of buildings, trees and vegetation. Some more information on the coupling 
between the shooting of rays technique and the asymptotic methods used in the code 
FERMAT may be found in [33], [34]. For aerodynamic forms like an aircraft or a 
missile which are mainly composed of curved surfaces, geometrical modelling by a 
parametric representation using NURBS is now in strong competition and takes 
advantage of the rapid augmentation of the possibilities of the computer. FASANT [35] 
is a well known code using such a representation. It has been developed by the 
University of Alcalà (Spain). The rays are obtained by solving the equations resulting 
from the direct application of Fermat’s principle. Since this problem is computationally 
complex, acceleration techniques based on visibility tests (z-Buffer) are used. A similar 
representation is used in the code IDRA [36] of IEEA (France). More details on this 
code and some numerical results are presented in section 3.4. 

 
3.3 – Unsolved problems and lines of future research 

       In all the computer codes described so far for GTD applications, the antenna is 
represented either by a phase centre and by its radiation pattern at infinity transposed by 
similarity to a finite distance R  corresponding to the distance of the phase centre to an 
interaction point on the platform, or by numerical data of electric and magnetic 
equivalent currents on the surface of the antenna or on a surface close to the antenna and 
surrounding it. Since some of the current elements may be located close to the platform-
surface, appropriate asymptotic solutions are needed for computing the interaction of 
the field radiated by these elements with the platform. Now the asymptotic solutions 
which are available for smooth convex surfaces are limited to the following situations : 

(1) Source and observation point are both located at far distance from the 
obstacle [37], 

(2) The source is located on the surface or very close to it ( =<< hkh ,1 height), the 
observation point being at large distance from it [38 ]   [ 39]. 

 



When the height of the source above a convex smooth surface is of the order of a few 
wavelengths or less or when both the source and the observation point are close to the 
surface, the uniform solution (1) becomes inaccurate, especially in the transition regions 
close to shadow boundaries through which it is no longer continuous. The last situation 
is encountered when two neighbouring antennas are located close to the platform-
surface and when the coupling between these antennas has to be evaluated. 

Other interactions like the diffraction of a creeping wave by the edge of a wedge in 
a curved convex surface into a space wave or another creeping wave [40] are also 
important for computing the deformation of the radiation pattern and particularly for 
evaluating the coupling between antennas. Here again, existing asymptotic solutions are 
not valid when the source or the observation point or both of them are close to the edge 
of the wedge. 

In the future, we will see platforms with antennas structurally integrated in them. 
The region in which these antennas will reside will be complex, both geometrically and 
materially. An hybrid numerical-asymptotic code (finite elements for instance, coupled 
to the outside through GTD) is a possibility for treating such configurations. If the 
platform is a strongly elongated object (like a fuselage of an aircraft or a missile) new 
asymptotic solutions are needed in the paraxial direction. Some work on generalized 
creeping waves propagating with very weak attenuation along on elongated object has 
been reported in [41 ]. Further research work on this subject, the results of which could 
also be applied to the coupling between elements of an array conformed to the surface 
of an elongated platform, will also be of interest for the future. 

In all the techniques using asymptotic methods described so far, it has been 
supposed that the electric characteristics of the antenna and particularly the currents on 
its surface, have not been influenced by the platform. This is an approximation which is 
all the more coarse as the antenna is located close to the platform surface. Again it is 
possible to take into account this coupling by using an hybrid numerical-asymptotic 
method based on the equivalence theorem illustrated on figure 5. 

 
Figure 5 : Equivalence theorem for the hybridization of an integral equation method with 

asymptotic solutions 
                 Théorème d’équivalence pour l’hybridation de la méthode d’équations 

intégrales avec des solutions asymptotiques 
 

As shown in figure 5, the exterior surface of a complex antenna is replaced by surface 
densities of electric and magnetic currents J  and M , radiating in the presence of the 
platform which is supposed to be a perfect conductor limited by a smooth convex 
surface. An integral equation method, restricted to the outer surface of the antenna can 
therefore be applied in which the coupling with the platform is described by the Green’s 
function of the space limited by the exterior surface of the platform and verifying the 
boundary conditions on this surface. For very large platforms asymptotic solutions 
allowing to calculate this Green’s function have to be developed for convex, but also for 
concave and more general smooth surfaces like convex-concave surfaces having an 
inflection line with a source and an observation point, both located close to the surface. 
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3.4 - UTD asymptotic code used for antenna implementation on electrically large  

structures 

   The implementation of antennas in a complex environment still remains a problem 
when high frequencies are considered. The Uniform geometrical Theory of Diffraction 
(UTD) is one of the most convenient techniques to solve this problem. This method is 
applied in the software IDRA developed at IEEA. Compared with other methods, the 
UTD has some interesting advantages. It is an efficient tool to understand the 
phenomenology because the global field results from localised contributors. In addition, 
the computational time is reduced. It is frequency independent and enables the software 
to handle electrically large structures. 

 Structure Geometry 

In IDRA, the structure geometry is based on NURBS curves and surfaces, which are 
imported from common CAD formats, like for example IGES or CATIA. NURBS is a 
parametric representation of a 3D curve or surface. It allows an accurate description of 
any arbitrary shape. The surface curvature is easily derived. It is an important parameter 
for UTD coefficients computation. Figure 6 presents some examples of structures 
described with NURBS. In these examples, very few NURBS surfaces are needed to 
describe complex geometries. 

 
 

 
 
 
 
 
 
 
 
Figure 6 : Two examples of aircrafts described with NURBS 
surfaces and curves. A detail of the nose is shown to see  
the complex form of the fuselage. 
 
 Ray Tracing 

Once the environment is geometrically described, the software performs a two steps 
calculation : 

• Ray tracing. 
• Once the interaction point is found, information about angles and curvatures are 

gathered to compute the UTD coefficients. The details of the UTD coefficients 
will not be explained here. 

The ray tracing method used on arbitrary shaped NURBS will be explained for the 
case of reflection. The geometry is presented in figure 7a. The total length of the ray 
path from source S to observation O (incident ray + reflected ray) depends on the 
position of a point R on the NURBS surface. This point follows the NURBS parametric 
equation. That’s why the length is a function of two parameters (u, v). According to 
Fermat’s Principle, the reflection point is found when the length reaches an extremum. 
A conjugate gradient routine is used to compute the parameters u and v minimizing or 
maximizing the ray length. It is not difficult to extend the method to all interactions, 
except one : the creeping rays. 
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Figure 7 : ray tracing on arbitrary NURBS curves or surfaces : simple reflection (a), 
simple diffraction (b), double reflection (c). 
 
 
 
 
 
 
 
 

 
 
A creeping wave propagates on a surface along a geodesic path. The ray tracer has to 
find a whole curve and not only a finite number of points. The geodesic path is 
described by equation (1) on a parametric surface in which the coefficients Γ  are the 
Christoffel coefficients of the surface, the indices 1 and 2 corresponding respectively to 
u  and ν . For an arbitrary shaped geometry, equation 1 must be solved numerically. In 
IDRA, the ray tracer uses a Runge-Kutta solver. Figure 8 presents a solution of equation 
equation (1). 
 
 (1) 
 
  

 
 
Figure 8 : geodesic path computed  
from a source located on a curved surface. 
 

 
 
 

 
 
 

Application : Antenna implementation 

Once the rays are traced, the UTD coefficients are applied to compute the electric 
field. Figure 9 presents an example of output : coupling parameter. Other outputs can 
also be provided like near field maps or radiation patterns. These values are important 
parameters for antenna design and may be highly dependent on the antenna 
environment.   

As the computation speed is very high, many iterations may be done in limited time. 
This feature makes the software very suitable for optimisation routines. The input of the 
problem is the position of the antenna. The cost function is the difference between the 
parameter to reach and the computed value of this parameter. For example, the cost 
function may be the difference between the free space radiation pattern and the 
computed radiation pattern. In that case, the aim is minimizing the influence of the 
environment. In other cases, the aim may be using the environment to reduce the 
coupling between two antennas. 

An interesting class of optimisation methods is the genetic algorithms (or other 
related stochastic methods). There are usually very few information on the cost 



function. In addition, this function may have several local extrema. The genetic 
algorithms are able to manage this situation.  

As a conclusion, the software IDRA based on UTD provides an efficient solution 
for fast evaluation of the radiation pattern of an antenna mounted on an electrically large 
carrier, or of the coupling between two antennas in a complex environment. Coupled 
with a set of optimisation utilities, it is a convenient tool for antenna implementation on 
structures. 
 
 
 
 
 
 
Figure 9 : Coupling between two dipole  
antennas separated by a square plate 
                                      
 
 
 
 
 
The example of figure 9 is taken from Burnside and Marhefka ([42], figure 48, chap. 
20). It applies to the calculation of the S-matrix parameters at the dipole feeding points : 
S11 (blue lozenge and crosses) and S12 (squares and triangles).Two cases are 
considered, one  with the square screen and another without the square screen. 
In the last case each dipole is in the shadow of the other dipole. The agreement is quite 
satisfactory. The small differences are explained by the fact that in the asymptotic 
technique the currents are imposed and are not modified by the coupling. 
 
 

4 - Conclusion and future trends 
            Frequency domain numerical solvers of the Maxwell equations have made a very 
rapid progress in the last decade due especially to major breakthroughs in iterative 
solvers. The fast multipole method is now able to perform computations with more than 
ten million unknowns. Some improvements and extensions of this method are still 
matter for research, especially its application in time domain solvers which is very 
promising. However it seems that we have now reached a stair-head in the number of 
unknowns which can be handled. Rather than continuing to augment the number of 
unknowns, the new lines of research go towards a reduction of the numbers of 
unknowns of a given problem either by using higher order finite elements, or by 
employing macro-basis functions. The convergence of numerical algorithms founded on 
finite elements of order 1 needs a number of elements per square wavelength which 
augments with the desired accuracy. For an accuracy of 0.1 dB, about 60 elements per 
square wavelength are needed whereas the same accuracy may be obtained with 30 
elements of order 2. This result is only valid if the geometrical modelisation of the 
surface by planar triangles is satisfactory. Curved triangular facets may be necessary 
when the order of the finite elements for the expansion of the currents augments. Some 
research work is performed at the moment on the application of finite elements of 
higher order defined on surfaces described by B-splines [43], [44]. The use of higher 
order finite elements in the multipole method is also a topic of future research. 
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Another way to limit the number of unknowns consists in including in the 
representation of the currents some information on the phase. The usual shape functions 
in the finite elements are polynomials in the local co-ordinates of the element and can 
therefore not properly follow the oscillations of the solution. A natural idea consists in 
incorporating an exponential with a linear phase variation corresponding to a plane 
wave. Since the direction of propagation along the elements is not known, a 
superposition of waves with uniformly distributed propagation directions has been 
chosen [45],  [46]. The introduction of the phase in the shape function permits to choose 
large elements covering about six wavelengths [46]. Since in the method of asymptotic 
currents, the propagation direction of the waves on the surface are known, this 
information could also be used for reducing the number of unknowns. Some work has 
been reported recently on analytically or asymptotically derived characteristic basis 
functions [47], [48]. 

Hybrid numerical-asymptotic methods in the sense of building macro-basis 
functions, but also in the classical sense of coupling two methods, which already 
constitute an important domain of research will remain a topic of further research 
together with the development of industrial codes in the form of a toolbox which will 
couple together codes that are based on different methods and which are needed for 
performing a specific task. An example is the software toolbox ADF (Antenna Design 
Framework) developed by ESA for the computation of antenna-spacecraft interactions. 
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