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Résumé Dans cet article une synthése sur les méthodesaltel gour la prédiction des Surfaces
Equivalentes Radar (SER) et des interactions aatesiuctures est présentée. Dans une premiéie part
les techniques de calcul des SER sont considéldms.liste de solveurs en régime harmonique et
stationnaire est donnée avec leurs performanceslae® mémoire et temps de calcul. Les méthodes
d’éléments finis de frontiére, de différences finen régime temporel, d’éléments finis volumiquiesia

que les techniques d’hybridation et de factorisationt passés en revue. En patrticulier, les pedioces
exceptionnelles de la méthode des multipbles rapabenparées a celles de la méthode classique des
moments sont mises en évidence. Nous avons aussiom® les travaux de recherche récents sur les
techniques numériques conduits en France. Les h&hasymptotiques sont surtout traitées dans la
seconde partie de cet article consacrée a l'inieraantennes-structures. Aprés une courte desomipe
I'évolution historique des outils de calcul fondggr la Théorie Géométrique de la Diffraction, les
avantages et inconvénients des différentes méthidmlesprésentation de la géométrie et de rechelehe
rayons sont discutés. Puis une liste des problémasrésolus et les axes de recherche futurs sur les
méthodes asymptotiques sont présentés ainsi quemme de code de calcul fondé sur la Théorie
Uniforme de la Diffraction. Dans la conclusion gquets nouveaux sujets de recherche tels que les
éléments finis d’ordre supérieur définis sur defases décrites par des B-Splines et les macraifore

de base contenant une information sur la phaseéduégs de solutions analytiques ou asymptotiques
sont brievement introduits.

Abstract :In this paper, a review is presented on computatiorethods for the prediction of Radar Cross
Sections (RCS) and antenna-platform interactioms first part the techniques for RCS computatines
considered. A list of frequency and time domairve for the Maxwell’s equations are given withithe
performances in memory requirements and run-timeunBary Elements Methods, Finite Difference
Time Domain Methods, Finite Elements — Finite Voturilethods, Hybridization and Factorization
Techniques, are reviewed. Especially the exceptigmasformances of the Fast Multipole Method
compared to those of the classical Moment Methedhaghlighted. We have also made mention of some
recent research work on numerical techniques cdadudn France. Asymptotic methods are mainly
discussed in the second part of this article deldte antenna-platform interactions. After a brief
description of the historical evolution of Geomediti Theory of Diffraction tools for antenna anatyand
design, the advantages and drawbacks of diffessmtiniques for generating the geometry and searching
the rays are discussed. Then a list of unsolvedl@nes and lines of future research on asymptotic
techniques are presented together with an exanmigleomputer code founded on the Uniform Theory of
diffraction. In the conclusion some new researgfict® such as higher order finite elements defined o
surfaces represented by B-Splines and macro-basididns containing information on the phase or
derived from analytical or asymptotic solutions hriefly introduced.



1 — Introduction

Computational electromagnetics constitutes nowadaysde domain of research
and development (R & D) in the world in which theef actors are the Universities and
the research centres mostly involved in the caimef new algorithms, the industries
active in the development of softwares adaptedhtrtneed assisted by software
development companies and some SME highly speethliza particular technique.

From this R & D activity throughout the world emesgevery year an enormous
number of publications on new algorithms most ofalvthaving only a short duration
of live while a few of them constitute a major adea which will profit by a long term
development.

In this article we limit our state of the art rewi¢o this last category. However
some new lines of research which have not yet pags®ugh the whole chain of
investigation running from the research state éoitldustry will also be given.

Computational methods can be classified in twogmates : numerical methods of
resolution of the Maxwell equations called also a@xaethods and asymptotic high
frequency methods which are only valid when therattaristic dimensions of the
scatterer are large compared to the wavelength.

Numerical methods are limited by the electricalesaf the body measured in
wavelengths. Thus, as the frequency is increaBed;dmputer storage or the CPU time
required to set up and solve the Maxwell equatibesomes prohibitive at some
frequency.

In the past for targets in and just above resomanamerical techniques were
used. For radar targets in the microwave band, pmtro high frequency methods
formed the basis for computation. But owing to tapid progress in numerical
techniques, especially during the last fifteen gedreir limit of applicability has been
shifted to higher frequencies and include now gdgpart of the diffraction problems
encountered at radar frequencies such as radas estion (RCS) computation,
electromagnetic compatibility applications and antedesign.

However at the same time the size and complexitybggcts have also augmented
especially in the field of radiocommunications laso in the field of radars where
objects which are both complex in shape and pbrtta@imposed of lossy dielectric or
anisotropic material are potential radar targethkil®/imost of these objects can now be
treated by a combination of numerical techniquepeeially for the prediction and
analysis of their radar cross sections, the antphatéorm interaction, especially on
large platforms like airplanes, spacecrafts angsshiall still outside their domain of
applicability. For this reason, we have divided muiew in two parts : the prediction of
radar cross sections where numerical methods priedbenand the prediction of
antenna-platform interactions where asymptotic wathremain absolutely necessary.
These two subjects are treated respectively intehsy2 and 3. Of course, numerical
methods are also of great importance in antenniysamaand design and some first
applications of these methods to antennas mounted spacecraft have been reported
recently [1]. New promising algorithms are alsoaideed in this special issue [2]. But
since most of the numerical techniques presentecthiapter 2 concerning RCS
predictions are also applied in antenna analybsse methods will not be presented
again in the chapter 3 devoted to antenna-platforteractions. Conversely, high
frequency methods [3] are still of importance faZ&Rcomputation especially at higher
frequencies. Moreover, they give a physical insighthe diffraction processes which
can be useful in the design of low RCS targets.ijgance the corresponding software
tools employ the same techniques for the geométncaelling of the surfaces and for
ray searching as those discussed in the antentfarplainteraction part, we will limit



our analysis in the RCS part to some fundamentaudsions on asymptotic methods
and especially on the role of the caustics whictegjigreater importance to the current-
based methods to the detriment of the field basetthoals in RCS computation.

It was impossible to present in detail the différeamerical methods mentioned in
our review. Instead we have given the referencesonfie main articles where the
information can be found. We have also quoted tbekven numerical techniques of
French researchers in applied mathematics whicmois so well known by the
electromagnetic community.

2 — Prediction of Radar Cross Section : synthesisnonumerical
methods

Numerical methods in electromagnetigehancreased in efficiency in the last
decades. These techniques are nowadays the maskefitty used for RCS, CEM
applications and antenna design. The choice afnitiods to be used depends on :

* Time discretization : time harmonic or time doméirmulations

» Spatial discretization : finite differences / volesnor elements methods
» Solver : explicit, direct or iterative

* Sensors (emitters/receivers) : monostatic, bistatic

* Media : infhomogeneous, an/isotropic, dispersive

e Computer : distributed / shared memory, ...

» The complexity of the problem to solve : multiscdéege body, ...

In this section, we first consider three main faesil of numerical methods : the
boundary elements methods (BEM), the finite diffietime domain methods (FDTD)
and the finite elements/volumes methods (FEM/FVM Q. solve complex problems
(large body and many apertures), we present sorbeidigation and factorization
technigues. Asymptotic methods are also brieflguised.

2.1 - Boundary Elements Methods (BEM

These methods are derived from the discrédizatf the Maxwell integral equations.
Thirty years ago, appeared the Method of MomektsM) (Harrington [4]) : from
harmonic domain integral equations we obtain arlalgc system constituted by a
complex dense matrix, right hand sides for eacldamt waves and currents density as
unknowns. The most common formulation is the welbwn Electric Field Integral
Equation (EFIE) using the Hdiv “edge” boundary edens on triangular meshes (Rao
Wilton Glisson basis functions [5]). A good accwyrat the solutions could be obtained
by taking the length of each edge of elements efdider A /7. Some extensions to
Magnetic Field Integral Equation (MFIE) and ComMrigeld Integral Equation (CFIE)
could be used to solve problems constituted by lygmeous domains of media, but
these formulations are less accurate than EFIEranuaire at least a /Ifiesh size.
However the CFIE is more stable and remedy to thblpm of spurious frequencies.

Direct solvers:
Most of the industrials BEM codes use direct sav@rU factorization) on parallel
machines and are now very efficient for problenesitess than N=200, 000 unknowns.

The limitation is due to memory requirements@fN® to)store the matrix (in core or
out of core) and CPU dD(N* +sN? 1o solve s linear systems (s number of sources).



Iterative solvers :
Iterative solvers (conjugate gradients, GMRES, QMédn reduce the CPU to
O(spN?) where s is the number of sources and p is the nuofldterations, but matrix
products are costly. To decrease the cost of mptogucts, recently towards the years
1994-95 Multi-Level Fast Multipol Algorithm (MLFMA)sing the CFIE formulation
(Chew [6], [7]) leads to CPU o®(spN Log®’N and memory storage dd(N LogN).
Problem sizes of more than N=10 millions unknowaosld@ be now available for RCS
problems (until to S and X bands).
The following table shows a comparison between Mardd FMM in case of a bistatic
perfectly conducting sphere (report made by EMSSfESA [1]).

Tableau 1 :comparison between FMM (CFIE without preconditiani mesh ind /10 ) and MoM.
CPU time is obtained with an AMD Opteron 248, 2122G

Sphere | Number of MLFMA MLFMA MoM MoM run-
diameter | Unknowns memory run-time |  memory time

2.566/ 6,372 41.4 Mbytes| 83.0sec 620 Mbytes 655 sec
5.1324 25,050 160.5 Mbytes 355.9 seqg 9.35 Ghytes 4.74 h
10.26441 100,005 636.3 Mbytes 0.46 h 149 Gbytes not solved
20.5281 398,304 2.475 Gbytes  2.61 1 2.31 Tbytes not solved

The use of preconditioning (SPAI for example) oftlecreases run-time and gives a
convergence of the solutions. In case of monostatimulti-sources problems (when
the number of sources s is large), efficiency cduddincreased by using block multi
right hand side iterative solvers as Block GMRES;GR (Sylvand [8], Simon [9]) or
interpolation techniques (Carayol [10]). Mer [113}e3 FMM methods in Desprées
Integral Equations to obtain accurate solutionseaMvhile to improve FMM methods,
more evaluations have to be done in terms of acguoa cavities and bodies including
absorbing material.

Time domain :

Time domain boundary element methods (BEMTD) hasnbdeveloped during the
ninety’s ([12], [13]). This method uses mixed fenélements to compute potentials and
an implicit stable temporal scheme . At each tatep, it needs to solve a sparse linear
system (conjugate gradient or direct solver) anaasix convolution. BEMTD are well
suited for large band problems and, to increaseetficiency, FMM techniques could
be used during the matrix convolution (see Terrf§s4$p.

2.2 - Finite Difference Time Domain Methods (FDTD)

These methods are derived from the discretizatibrthe time domain Maxwell
equations on structured meshes. At each time, waroh fully explicit scheme (Yee
scheme [15]) allowing to compute quite easily salvemillions of unknowns
(electromagnetic fields) . We find many applicaiadn CEM and in computation of
fields in heterogeneous media. The main drawba¢ksDd D is the accuracy of the
solution : firstly, absorbing boundary conditiorr fihe outer boundary in free space
gives spurious solutions if the distance betweentibundary and the body is too small,
and secondly, stair cases approximation of the bmayguces dispersive solutions.
Recently Béranger in 1994 [16], introduced Perjedflatched Layer (PML) which
removes the drawbacks of absorbing boundary camditiTo remove the stair cases



approximation, a coupling between FDTD (in freecg)aand FEM or FVM (a region
around the body discretized with tetrahedrons nesé paragraph) could be used.

2.3 - Finite Elements/Volume Methods (FEM/FVM)

These methods are derived from the discretizatibrthe Maxwell equations on
unstructured meshes (tetrahedrons, prisms, hexamgdr

Harmonic time domain :

FEM are based on Hcurl “edge” elements (Nédéledsbasctions [17]). These
elements are free of spurious modes and lead toattect field continuity properties at
the interfaces between different media particulavill suited for the modelling of
inhomogeneous anisotropic scatterers. To model genmaous regions and particularly
the unbounded free-space, integral equations (BEME been combined to FEM and
the compatibility between Hcurl end Hdiv elemends been established. The combined
equations lead to solve a quite-sparse linear sysited direct and/or iterative solvers
could be used (see [18] for some applications).

Time domain :

FVTD was first introduced in electromagnetic by Sker in 1989 [19] and was derived
from codes used in CFD (Euler equations), but gmistwere too dissipative. Later on
more accurate explicit high order schemes haveaapgd [20]) .

Concerning FETD (mixed finite elements) or DGTD gEontinuous Galerkin elements)
[21], [22] we introduce a high order non dissipatiexplicit scheme, with very accurate
solutions for long time simulation. To reduce fhee-space region, PML techniques
could also be combined with this time domain method

2.4 - Hybridization / factorization

Coupling together different methods is a good wayeduce computer requirements in
terms of memory and CPU time for solving multiscaled complex structures for
electromagnetic problems : large body with cavjt@®tuberances, different dielectric
materials, ... It consists first in separating thebgll problem in smaller local problems,
then in computing partial solutions with an apprater method for each sub domain,
and at the end in summarizing the solutions.

Collaborative simulations are also a good appleatior coupling techniques : the
electromagnetic simulations of Antenna or RCS ¢bators must combine models
under the responsibility of various partners : aptennas developed by an electronic
systems manufacturer, missiles by an weapon mauéic engine by an engine
manufacturer. The aircraft manufacturer must be &blgather these models to get the
integrated behaviour of all sub-systems.

We find a discussion and a full description of sohybridization and factorization
techniques in [23], [24]. These techniques have lfiest introduced in [25] and further
reported in [26].

Factorization :

It consists of a matched domains decompositionragga by interfaces. Each domain is
reduced to operators on the interfaces by usingitabde numerical method. Then a
gathering of operators leads to the final solutidhthe factorized operators process on



the same basis functions than the solver, factiioizas only an algebraic manipulation
and does not provide any loss of accuracy.

Factorization is an efficient method and we obtaineduction of cost from n to n2
where n is the number of sub domains. Some liroiatf this method concerns the
decomposition of unbounded regions and difficulties model interfaces in the free-
space, leading to spurious solutions.

Hybridization :

We decompose the global problem in two sub probleinsthe case of apertures in a
body the first problem called short circuited peshl contains the body without
apertures (for an air duct the aperture or interfad! be the cross section of the air
intake); we obtain the radar cross section RCSi sburce currents Js and receiver
currents Jr at the interface. The second probldiadcéhe local problem contains the
apertures and near regions around apertures; selagurrents as sources at interface
and solve the Ms currents at the interface. Thencerapute an integral reaction at
interfaces between Ms currents inducted by emiftera local problem and Jr currents
inducted by receivers. Finally we summarize RCSA iategral reaction to obtain an
approximate RCS of the global problem.

Hybridization is well suited for the computationragh frequency when the apertures
size is > 5 wavelength. The short circuited probleould be solved by an high
frequency method : asymptotic or FMM for exampleg dhe local problems could be
solved by numerical methods adapted to the apsrtB&EM for example.

Application to the channel mock-up at 7GHz (Segre 1). The measurements have
been done by ONERA

FigurePerspective of the channel mock-up
Perspective de la maquetteakhduit

The problem is decomposed in 9 domains : outeroregtylinder) is solved by the
method of asymptotic currents (MoASC in Dassauliafien Spectre code) and the
inner region (6 inlet sections and 2 engine wheats)solved by factorization (using
BEM methods in Dassault Aviation Spectre code).
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Figure 2 :RCS of the channel mock-up as a functio# tdr 7 GHz
SER de la maquette du conduit en fonctio@geur 7 GHz

Figure 2 shows a comparison of monostatic nelt RES in polarizatiordd function
of & (x,z angle, where z is along the duétz 90° for an incident wave entering in the
duct and d =180 for an incident wave perpendicular to the outelindgr) : red
crosses for measurements, blue line for referermmtorization method (9 BEM
methods, involving 500,000 unknowns), cyan line ligbrid method (1 MoASC + 8
BEM methods involving 200,000 unknowns) and greee for factorization method (9
BEM methods with an truncated outer cylinder invady 200,000 unknowns). We
observe a very good agreement between all soluérospt for the factorization with a
truncated cylinder whefl > 160 .

2.5 — Asymptotic methods

Geometrical Optics (GO) predicts an infinite vafoethe RCS of a flat plate
of finite dimensions. This wrong result could bepkxined by the fact that the rays
reflected by the surface of the plate are all pelraind therefore pass through a point
caustic at infinity.

A more refined analysis consists in observing thathe vicinity of the shadow
boundaries of the reflected GO field, the raysrddted by the rim of the plate lie in the
transition regions of the reflected field. At lardestance from the plate, the beam of
rays reflected by the plate is entirely situatethmtransition zones and GO is no longer
valid and must be replaced by the Uniform TheoryDdfraction (UTD). It can be
shown that by adding to the reflected field at &sewvation point located at finite
distance, the field diffracted by the rim given BYD and by letting the observation
point tend to infinity in the direction of refleot, the terms which do not satisfy the
Sommerfeld radiation condition strike out and thst rof the formula gives the correct
result. This procedure which involves a passaga tonit is not easy to apply to a
general polygonal plate. Moreover, the same proladeises when the plate is slightly
bent in which case the derivation of the correstuilieis much more complicated. As a



consequence, field-based methods are not suitabl®R€S computations of flat or
guasi-flat plates. An easier approach consistseterchining first the currents on the
plate and then in calculating the fields radiatgdh®se currents. This technique which
is called a current-based method is widely use®@% computation of complex targets
composed of curved and quasi-flat surfaces likplanes, ships and tanks. In the past
most of the codes used the Physical Optics (POnpappation for the determination of
the currents associated with the Physical TheoryDdfraction (PTD) giving a
correction to PO when sharp edges are presente $i@cconsiders only the currents on
the illuminated part of an object, this method & walid for large bistatic angles. It
gives also inaccurate results for the monostatiSR@ nose on illumination of an
airplane or a missile. The asymptotic current metimbich consists in completing the
GO contribution to the currents on the surfaceragdition regions currents close to the
light shadow boundary and by the creeping waveectiiin the shadow region, permits
to overcome the shortcomings of PO. The most regersions of asymptotic methods
codes for RCS computation integrate the asymptmiicent method, the rays being
determined by a shooting of rays procedure destribe the antenna-platform
interaction part of this article.

3 - Antenna-platform interactions

3.1 - Introduction

The interactions of an antenna with its platfornmith other surrounding objects
is a fundamental problem which arises in variousaios like radars mounted on an
air-plane or a ship, terrestrial or satellite radimmunications and electromagnetic
compatibility between equipments.

This problem differs from the computation of thedBaCross Section (RCS) by
the fact that the source or reciprocally the obetgon point, are at finite distance from
the platform supporting the antenna whereas, ®IRES, the object is illuminated by a
plane wave and the scattered field is observedfatity. In addition practically all
algorithms which have been developed in the pase teeen limited to monostatic
configurations, the emitter and the receiver besngerposed whereas the antenna-
platform interaction is essentially bistatic. Thetiferences are at the origin of the
development of algorithms which take into accotetnear field interactions and which
are specifically tuned to antenna analysis andydesi

Generally, the modelisation of an antenna in itgirenment implies the use of
several methods depending on the size and the eartplof the structure of the
antenna itself and on the natural or artificialtabkes which intercept the radiated field.

In this review, we limit our investigations to d&dial man-made obstacles
constituted by the platform supporting the antenmaast, tower, building, terrestrial
vehicle, ship, spacecraft and aircraft. In addittonthe deformation of the radiation
pattern of the antenna (amplitude, phase, polasisadirectivity), the surrounding
obstacles may also enhance or reduce the coupéhgebn antennas located on the
same platform. It is well known that the electrometic characteristics of an antenna
can be strongly modified and its performance redumethe platform it is mounted on.
Since most antennas are not designed for a patipldtform and a specific location on
it, it was important to develop appropriate softevém compute the interaction of the
antenna with the platform as well as with otheghbburing antennas.

The computational methods which have been develdpedhe prediction of
antenna-platform interactions can be classifietiio main categories : the numerical
methods and the asymptotic high frequency methods.



The numerical methods are mainly used for the meatén of the antenna itself.
The different techniques are the same as thoseiloeddn part | for the computation of
the RCS. Despite the rapid augmentation of theifopmances during the last fifteen
years, due mainly to the Fast Multipole Method, theatment of the interactions
between an antenna and its platform has only stasey recently [1] for medium sized
platforms and antennas defined by their free spadeation diagram. For complex
antennas mounted on a platform which is very lamapared to the wavelength or for
an array of elements conformed to the surface ddiamaft, the size of the problem is
still too big for strictly numerical methods.

The asymptotic high frequency methods used in aatesnalysis and design
comprise principally the Geometrical Optics (GOgasated to the Geometrical Theory
of Diffraction (GTD) which give directly the scatesl field along rays and the
asymptotic current method which give the currentstlee surface of the scattering
object. In connection to these methods, other tgcles have been developed mainly to
remedy locally to some of their insufficiencies lsuas the Uniform Theory of
Diffraction giving correctly the field in the tramisn regions close to the shadow
boundaries, the Spectral Theory of Diffraction wailog to extend the theory to non
local plane waves, the Incremental Theory of Ddfien valid in the vicinity of an edge
and verifying the boundary conditions, the Equinalédge Currents giving the field on
a caustic of the edge diffracted rays. On accounthe bistatic behaviour of the
interaction between an antenna and the surrounslingtures, techniques like the
Physical Optics (PO) approximation which consistalculating the currents on the
illuminated region of an object using the GO fiedthd the Physical Theory of
Diffraction (PTD) giving a correction to the fielddiated by these currents due to the
existence of fringe currents close to the edgewédge, which are both very important
in RCS computations, are of less importance hereexXception is the computation of
the radiation pattern of reflector antennas whe@ea®d GTD are not valid owing to the
presence of a caustic of the reflected field andhef field diffracted by the rim, at
infinity.

On the other hand, the asymptotic current methodiwiives the currents on both
the illuminated region and the shadowed regionakng into account the effect of
creeping waves, play an important role, especiallyhybrid methods combining a
numerical technique with asymptotic solutions.

In section 3.2, after a brief description of thstaiical evolution of GTD tools for
antenna analysis and design, some advantages antaitiks of different techniques for
generating the geometry and searching the raysliscassed.

In section 3.3, we present a list of problems whiemain to be solved. These
problems will be the basis from which different di of future research and
development will be defined.

In section 3.4, a typical UTD code for antenna wsialis presented with some
comments and illustrations on the geometrical modglof the platform, the ray
searching technique and the types of outputs peovid

3.2 — Historical development and state of the aft®ID tools for the computation of
antenna-platform interactions

At high frequencies, or more precisely whem>>1 wherek is the wave number
(kzz%) and D is a characteristic dimension of the scattere, réflected GO field

constitutes the dominant contribution to the scattefield. It is the first term of an



asymptotic expansion in entire or fractional powefs}{( and is of order zero with

respect to this parameter. The next term, of ortd_e}/ﬁ corresponds to the field

diffracted by a sharp wedge. Creeping waves whreho& orderk_% are generally a
weaker contribution owing to the exponential deedgng their propagation path.
However this argument is only valid for RCS compiotain a monostatic diffraction
process since there, the creeping waves traveh@ tlistance because they have to
circumvent the object in order to shed energy e direction opposite to the direction
of propagation of the incident wave, unless itiffracted by an edge and consequently
of lower order. In the case of an antenna intamgctvith a platform, having curved
surfaces, creeping waves may exist which traveh arery short distance. In this case
their contribution can no longer be neglected. Sitle beginning of the development
of codes for antenna analysis and design the efiag been put on these three
contributors.

For computing the GO field reflected by curved aoefs, it is necessary to know
the principal radii of curvature and the princigaections of the surface at the point of
reflection. Since the curvatures depend on thergkatderivatives of the surface we see
that the geometrical modelisation of the lattersigomitted to completely different
constraints compared to numerical methods. In ih& todes which have been
constructed (code SARGASSES [27] from THALES, Fegrnode NEC-BSE [28] from
University of Ohio, USA), the structures were regamreted with the aid of elementary
analytical surfaces (cylinder, cone, ellipsoidi fiéates, etc...). The rays were searched
by solving the equations verified by the co-ordasabf the interaction points, obtained
by applying the Fermat principle. The knowledge tbé rays and of the surface
characteristics at the interaction points allowse do calculate the reflected and
diffracted field. In order to make this operaticeseer, MOTHESIM has developed the
library PROMETHEE [29] which is composed of modukssch of which treating a
specific interaction (reflection, edge diffractiocreeping waves) and having general
inputs and outputs allowing them to be used atpdage in the interaction chain along a
ray trajectory. For instance the same module cpomrding to a reflection is used @f

and Q; in the chain of interactions of figure 3. Thesedues which take also into

account the necessity to use specific asymptotigieas in the vicinity of the shadow
boundaries given by the Uniform Theory of Diffractj have been integrated in the
software SARGASSES at the end of the eighty’s.

“ 2 {Q
/\ N\ Qg

Figure 3 :Chain of interactions comprising reflections, edfiféractions and creeping
waves
Chaine d'interactions compant des réflexions, des diffractions et des ondes
rampantes



The geometrical modelisation of a complex object &x-plane for instance) with a
collection of analytical surfaces is an expensigeration (3 weeks of an engineer) and
its accuracy is difficult to control. For this reas this technique has been progressively
replaced by CAD procedures which have been very stialled on workstations.

The second version of SARGASSES makes use of clewddces represented by
NURBS (Non Uniform Rational B-Spline). The rays as@ll searched directly by
applying Fermat's principle and solving the coresging equations on the Bésier
squares. This is however a very heavy procedupecely when applied to double
interactions (double reflections, reflection-difftieon) on a general complex object
without a first trial of the rays. For a systemagiarch of ray trajectories with three
interactions, the computer time needed nowadaysirestill too long and unfeasible
on a workstation.

In order to overcome this difficulty, researchammed towards a new technique
called “shooting of rays” which consists in emigt a ray or a thin pencil of rays in a
given direction and in following its path by applgi at each interaction point with a
surface, the laws of reflection. By emitting raysall directions and selecting those
which reach a small volume around the observatantpit is possible to determine all
simple and multiple reflected rays. This procedapelies also to the diffraction by an
edge. In this case new elementary pencils of regy®mitted from the interaction point
on an edge, in the direction of the generatrixeshefKeller cone. This procedure is
used in the software SPECTRE [30] from Dassauliafdn for complex objects (air-
planes) modelled geometrically with the CAD tool TA.

The shooting of rays is particularly rapid for sdng multiply reflected rays on
an object the surface of which is modelled by pléaeets, since in this case the
divergence per unit length of a pencil of rays remmaconstant so that the global
divergence can be easily controlled. In the casecwo¥ed surfaces however, the
divergence of a pencil of rays can change verydigpiespecially close to shadow
boundaries as illustrated on figure 4.

Figure 4: Divergence of the reflected rays near the shadowntary
Divergence des rayons réfléchis pres de la froattBombre

In this case, it is necessary to reduce drasfitlad width of the pencil of rays in some
directions of space and start again the shootingagé procedure until a pencil
sufficiently thin reaches the observation pointisTHifficulty which leads to much
longer CPU time is at the origin of the prefereaceorded in the ray search tools to
facetted surfaces. An example is the code AAPG 2(Q@@craft inter-Antenna
Propagation with Graphics) de Matis Inc. in colledimn with IT Research Institute,
USA [31] which operates on a three-dimensional fptat-surface representation,
consisting of a collection of plane triangular fscelhe ray searching procedure starts
with a set of initial trial paths which can be ab&l by the shooting of rays technique.



In a second step each of the initial paths is dgtoh by an iterative algorithm which
searches for an extremum of the curve length. wmngtrical parameters of the true
surface which enter in the UTD formulas are evadatia a double spline interpolation,
one for smoothing the field of tangent vectors #ral other for smoothing the field of
normals in the vicinity of the interaction pointrfeeflection or edge diffraction and
along the facetized surface path for creeping rays.

The computation of the geometrical data of the wmoa facetted surface at the
interaction points of the ray path with the surfaseessential for applying the UTD
formulas. Otherwise the information concerning ¢hessing of a caustic of reflected or

edge diffracted rays would be lost and the phasgé ch % (in the time convention

expfat) ) affecting a wave crossing a caustic would notaken into account. There are

still some GTD codes in France and elsewhere wthachot take care of this problem.

It is also important to mention that the numbefaokets needed for the geometrical
modelling of a surface is not independent of tlegd@iency and augment with the latter.
The criterium which is usually adopted is that theximum distance between the

surface and the facet being less th%% where Ais the wavelength. When a fixed

sampling is used at higher frequencies, a “facetai@ppears in the radiation diagram.

Another GTD code which operates on surfaces reptedeby plane triangular
facets coupled with a shooting of rays proceduserkaently been developed in France
by ONERA (code FERMAT [32]). This code is well atlegh to very large scenes
composed of buildings, trees and vegetation. Somee nimformation on the coupling
between the shooting of rays technique and the ptsfim methods used in the code
FERMAT may be found in [33], [34]. For aerodynania@ms like an aircraft or a
missile which are mainly composed of curved sugageometrical modelling by a
parametric representation using NURBS is now irongr competition and takes
advantage of the rapid augmentation of the po#s#isilof the computer. FASANT [35]
is a well known code using such a representatiborhas been developed by the
University of Alcala (Spain). The rays are obtairn®dsolving the equations resulting
from the direct application of Fermat’'s princip&ince this problem is computationally
complex, acceleration techniques based on vigiligists (z-Buffer) are used. A similar
representation is used in the code IDRA [36] of AE@Erance). More details on this
code and some numerical results are presentedtioss.4.

3.3 — Unsolved problems and lines of future resdarc

In all the computer codes described so far for Gafplications, the antenna is
represented either by a phase centre and by isticad pattern at infinity transposed by
similarity to a finite distance&® corresponding to the distance of the phase céntam
interaction point on the platform, or by numeriaita of electric and magnetic
equivalent currents on the surface of the antenmma @ surface close to the antenna and
surrounding it. Since some of the current elemerdy be located close to the platform-
surface, appropriate asymptotic solutions are rebdde computing the interaction of
the field radiated by these elements with the ptaif Now the asymptotic solutions
which are available for smooth convex surfacediamiéed to the following situations :

(1) Source and observation point are both locatedam distance from the
obstacle [37],
(2) The source is located on the surface or varyecto it kh<<1,h=height), the

observation point being at large distance frol3&] [ 39].



When the height of the source above a convex smmafiace is of the order of a few
wavelengths or less or when both the source andlibervation point are close to the
surface, the uniform solution (1) becomes inaceyr@specially in the transition regions
close to shadow boundaries through which it isamgér continuous. The last situation
is encountered when two neighbouring antennas aoatdd close to the platform-
surface and when the coupling between these argdrasato be evaluated.

Other interactions like the diffraction of a creggpwave by the edge of a wedge in
a curved convex surface into a space wave or anatieeping wave [40] are also
important for computing the deformation of the editin pattern and particularly for
evaluating the coupling between antennas. Herenagaisting asymptotic solutions are
not valid when the source or the observation poirtioth of them are close to the edge
of the wedge.

In the future, we will see platforms with antensasicturally integrated in them.
The region in which these antennas will reside tdlcomplex, both geometrically and
materially. An hybrid numerical-asymptotic codenifie elements for instance, coupled
to the outside through GTD) is a possibility foedating such configurations. If the
platform is a strongly elongated object (like aefiage of an aircraft or a missile) new
asymptotic solutions are needed in the paraxiadction. Some work on generalized
creeping waves propagating with very weak attepnatlong on elongated object has
been reported in [41 ]. Further research work as shbject, the results of which could
also be applied to the coupling between elemenenaddrray conformed to the surface
of an elongated platform, will also be of interfestthe future.

In all the techniques using asymptotic methods riest so far, it has been
supposed that the electric characteristics of tiierma and particularly the currents on
its surface, have not been influenced by the platfd his is an approximation which is
all the more coarse as the antenna is located tbotee platform surface. Again it is
possible to take into account this coupling by gsam hybrid numerical-asymptotic
method based on the equivalence theorem illustiatdiyure 5.
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Figure 5: Equivalence theorem for the hybridization of ategral equation method wi
asymptotic solutions
Théoreme d’équivalence pour [I'hgthtion de la méthode d'équations
intégrales avec des solutions asymptotiques

As shown in figure 5, the exterior surface of a per antenna is replaced by surface

densities of electric and magnetic curreatsand M , radiating in the presence of the
platform which is supposed to be a perfect condubitoited by a smooth convex
surface. An integral equation method, restricteth®outer surface of the antenna can
therefore be applied in which the coupling with ghatform is described by the Green’s
function of the space limited by the exterior sogfaf the platform and verifying the
boundary conditions on this surface. For very lapigforms asymptotic solutions
allowing to calculate this Green’s function havéo&developed for convex, but also for
concave and more general smooth surfaces like gecmecave surfaces having an
inflection line with a source and an observatiompdoth located close to the surface.



3.4 - UTD asymptotic code used for antenna implertadion on electrically large
structures

The implementation of antennas in a complexrenvnent still remains a problem
when high frequencies are considered. The Unifoeontetrical Theory of Diffraction
(UTD) is one of the most convenient techniquesdiwesthis problem. This method is
applied in the software IDRA developed at IEEA. Qamed with other methods, the
UTD has some interesting advantages. It is an ieffictool to understand the
phenomenology because the global field results fimralised contributors. In addition,
the computational time is reduced. It is frequeimciependent and enables the software
to handle electrically large structures.

Structure Geometry

In IDRA, the structure geometry is based on NURBE&/es and surfaces, which are
imported from common CAD formats, like for examp®&ES or CATIA. NURBS is a
parametric representation of a 3D curve or surficalows an accurate description of
any arbitrary shape. The surface curvature isyedsilived. It is an important parameter
for UTD coefficients computation. Figure 6 presestsme examples of structures
described with NURBS. In these examples, very fedRBS surfaces are needed to
describe complex geometries.

Figure 6: Two examples of aircrafts described with NURB¢ «~
surfaces and curves. A detail of the nose is stliovgee
the complex form of the fuselage.

Ray Tracing

Once the environment is geometrically describee stbftware performs a two steps

calculation :

* Ray tracing.

* Once the interaction point is found, informatioroabangles and curvatures are
gathered to compute the UTD coefficients. The tetaf the UTD coefficients
will not be explained here.

The ray tracing method used on arbitrary shaped B®JRill be explained for the
case of reflection. The geometry is presentedgaré 7a. The total length of the ray
path from source S to observation O (incident rayeftected ray) depends on the
position of a point R on the NURBS surface. Thisnptollows the NURBS parametric
equation. That's why the length is a function obtparameters (u, v). According to
Fermat’s Principle, the reflection point is founthem the length reaches an extremum.
A conjugate gradient routine is used to computepdimmeters u and v minimizing or
maximizing the ray length. It is not difficult toceend the method to all interactions,
except one : the creeping rays.



Figure 7: ray tracing on arbitrary NURBS curves or surfacesmple reflection (a), S
simple diffractign (b), double reflection (c). s

R2{u2v2)

A creeping wave propagates on a surface along degenpath. The ray tracer has to
find a whole curve and not only a finite number pdints. The geodesic path is
described by equation (1) on a parametric surfacahich the coefficients are the
Christoffel coefficients of the surface, the indicekand 2 corresponding respectively to
u andv. For an arbitrary shaped geometry, equation 1 fmestolved numerically. In
IDRA, the ray tracer uses a Runge-Kutta solverufe@ presents a solution of equation
equation (1).

335 Fzz( ) (2rnrz)(") (rnzrn)( ) 2 (1)
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Application : Antenna implementation

Once the rays are traced, the UTD coefficientsagaied to compute the electric
field. Figure 9 presents an example of output :ptiog parameter. Other outputs can
also be provided like near field maps or radiag@atterns. These values are important
parameters for antenna design and may be highlyerdlsmt on the antenna
environment.

As the computation speed is very high, many iterstimay be done in limited time.
This feature makes the software very suitable fingisation routines. The input of the
problem is the position of the antenna. The costtion is the difference between the
parameter to reach and the computed value of #wianpeter. For example, the cost
function may be the difference between the freecespadiation pattern and the
computed radiation pattern. In that case, the @mminimizing the influence of the
environment. In other cases, the aim may be udiegenvironment to reduce the
coupling between two antennas.

An interesting class of optimisation methods is gemetic algorithms (or other
related stochastic methods). There are usually Yewy information on the cost



function. In addition, this function may have sealetocal extrema. The genetic
algorithms are able to manage this situation.

As a conclusion, the software IDRA based on UTDvyates an efficient solution
for fast evaluation of the radiation pattern ofsartenna mounted on an electrically large
carrier, or of the coupling between two antennas icomplex environment. Coupled
with a set of optimisation utilities, it is a comrent tool for antenna implementation on
structures.
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The example of figure 9 is taken from Burnside aarhefka ([42], figure 48, chap.
20). It applies to the calculation of the S-maparameters at the dipole feeding points :
S11 (blue lozenge and crosses) and S12 (squarestriamgles).Two cases are
considered, one with the square screen and anwtitheyut the square screen.

In the last case each dipole is in the shadow e@fbther dipole. The agreement is quite
satisfactory. The small differences are explaingdthe fact that in the asymptotic
technique the currents are imposed and are notfieddiy the coupling.

4 - Conclusion and future trends

Frequency domain numerical solvers of the Maxwellagions have made a very
rapid progress in the last decade due especialjdr breakthroughs in iterative
solvers. The fast multipole method is now ableddqgrm computations with more than
ten million unknowns. Some improvements and exterssiof this method are still
matter for research, especially its applicationtime domain solvers which is very
promising. However it seems that we have now rahehstair-head in the number of
unknowns which can be handled. Rather than comnto augment the number of
unknowns, the new lines of research go towards daucteon of the numbers of
unknowns of a given problem either by using higbeder finite elements, or by
employing macro-basis functions. The convergenasuaierical algorithms founded on
finite elements of order 1 needs a number of eléspear square wavelength which
augments with the desired accuracy. For an accwfbyl dB, about 60 elements per
square wavelength are needed whereas the same@ccuay be obtained with 30
elements of order 2. This result is only valid hietgeometrical modelisation of the
surface by planar triangles is satisfactory. Curtrghgular facets may be necessary
when the order of the finite elements for the ex@m of the currents augments. Some
research work is performed at the moment on thdicgdion of finite elements of
higher order defined on surfaces described by Bwpl[43], [44]. The use of higher
order finite elements in the multipole method soad topic of future research.



Another way to limit the number of unknowns corsigh including in the
representation of the currents some informatiotherphase. The usual shape functions
in the finite elements are polynomials in the localordinates of the element and can
therefore not properly follow the oscillations tktsolution. A natural idea consists in
incorporating an exponential with a linear phaseati@n corresponding to a plane
wave. Since the direction of propagation along #lements is not known, a
superposition of waves with uniformly distributedopagation directions has been
chosen [45], [46]. The introduction of the phas¢hie shape function permits to choose
large elements covering about six wavelengths [88jce in the method of asymptotic
currents, the propagation direction of the waves tlb@ surface are known, this
information could also be used for reducing the benof unknowns. Some work has
been reported recently on analytically or asympédty derived characteristic basis
functions [47], [48].

Hybrid numerical-asymptotic methods in the sensebaflding macro-basis
functions, but also in the classical sense of dagptwo methods, which already
constitute an important domain of research will a&ma topic of further research
together with the development of industrial codeshie form of a toolbox which will
couple together codes that are based on differathads and which are needed for
performing a specific task. An example is the safevtoolbox ADF (Antenna Design
Framework) developed by ESA for the computatioardenna-spacecraft interactions.

REFERENCES

[1] U. Jacobus and N. Berger, “Extension of theKBESoftware Capabilities for
the Modelling of Antennas Installed on Spacecr#dtfBrms”, ESTEC Contract
n°18039/04/NL/LvH/gm, Final report, 2004.

[2] T.Koleck, N. Bartoli, F. Millot, N. Zerbib, A.Bendali, M. Fares,”"Some
Numerical Models to Compute the Electromagnetic efina-Structures
Interaction$, Compte-rendu de I’Académie des Sciences — Phgsifja, 2005.

[3] D. Bouche, F. Molinet, R. Mittrd /Asymptotic Methods in Electromgnetics
Springer-Verlag, 1997.

[4] R.F. Harrington, “Field computation by momentethods”, The Macmillan
Company, New York ,1968

[5] S.M. Rao, D.R. Wilton and A.W. Glisson, “Etemmagnetic scattering by
surfaces of arbitrary shape”, IEEE Trans. Ant. Profol. AP-30, pp. 409-418,
May 1982

[6] J.M Song, C.C. Lu, W.C. Chew, “Multilevel tasultipole algorithm for solving
combined field integral equations of electromagnstiattering”, Microwave and
Optical Technology Letters, 10:14-19, Sept. 1995.

[7] J.M Song, C.C. Lu, W.C. Chew and S.W. LeeasF lllinois Solver Code
(FISC)”, IEEE Antennas and Propagation Magazinel. M0, n°3, pp. 27-34,
June 1998

[8] G. Sylvand, “La méthode multipdle rapide decéromagnétisme : performance,
parallélisation, applications”, PHD thesis, ENPhd 2002

[9] J. Simon, “Extension des Méthodes MultipblespRles : résolution pour des
seconds membres multiples et applications aux ®bjitlectriques”, PHD
Thesis, June 2003.

[10] Q. Carayol, “Développement et analyse d'umé&thode multipdle multiniveau
pour I'électromagnétisme”, PHD thesis, Feb. 2002.



[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

K. Mer-Nkonga, F. Collino “The fast Multipel Method applied to a Mixed
Integral System for Time-Harmonic Maxwell's equasd, European
Symposium on Numerical Methods in Electromagne{itSBE02), Toulouse,
France, pp. 121-126.

|. Terasse, “Résolution mathématique et nuouér des équations de Maxwell
instationnaire par une méthode de potentiels résdirdPHD Thesis école
polytechnique, Jan. 1993

V. Lange, “Equations intégrales espace-tempsr les équations de Maxwell.
Calcul du champ diffracté par un obstacle dissipd&HD Thesis Oct 1995.

I. Terasse, G. Sylvand “Pourquoi la BEM temgdan’a pas eu I'implémentation
opérationnelle que I'on pouvait espérer il y a b6 @ Et comment y remédier ?”.
Modélisation Electromagnétique, Journées Scienifigde 'ONERA 23 march
2005. To appear.

K. Yee, “Numerical solution of initial bounda value problem involving
Maxwell's equation in isotropic media’, IEE Tran®©n Antennas and
Propagation, AP-16 (1966), pp. 302-307

J.P Beranger, A perfectly matched layer tog fabsorption of electromagnetic
waves”, J. Comput. Phy., Vol. 114, pp. 185-200,4199

J.C. Nédélec, “Mixed finite elements iR*”, Numer. Math., vol. 35, pp. 315-
341, 1980

P. Soudais, H. Stéve and F. Dubois, “Scatterfrom several test objets
computed by 3-D hybrid IE/PDE methods”, IEE Tra@®n Antennas and
Propagation, Vol. 47, n°4, pp. 646-653, April 1999.

V. Shankar, W.F. Hall and A.H. Mohammadia\ time-domain differential
solver for electromagnetic scattering problem” Remtings on the IEE, vol. 77,
pp. 709-721, no5, 1989.

J.P. Cioni, L. Fezoui and H. Steve, “A Pahllime-Domain Maxwell Solver
Using Upwind Schemes and Triangular Meshes”, ImpzEfctComputing in
science and engineering. Vol. 5, pp215-247, 1993

S. Piperno and all, “Modélisation numérigéaliste des effets (thermiques) sur
les tissus de la téte des ondes électromagnétiéuneses par les téléphones
mobiles”. Journées Scientifiques de TONERA 23 rma2605. To appear.

G. Cohen, X. Ferrieres et S. Pernet. “Unehoéé de Galerkin Discontinue
d'ordre élevé pour résoudre les équations de Mdxwehs le domaine
temporel”. Journées Scientifiques de 'ONERA 23 ¢ha2005. To appear.

G. Leflour. “Scattering by apertures, genef@mulation and application for
radar cross section and antenna computation”. riatemal Symposium on
Antennas, Proceedings pp. 341-346, Nice 2004.

P. Soudais, A. Barka;Subdomain method for collaborative electromgnetic
computatiofi, Journées Scientifiques de 'ONERA 23 march 20@bappear.

A. Barka, G. Bobillot,"La factorisation : une nouvelle approche pour une
modélisation efficace des SER : application aux chas a Air"”, Rapport
Technique ONERA 12/3721 N, March 1995.

A. Barka, P. Soudais, D. Volpeft,Scattering from 3D cavities with a plug and
play numerical scheme combining IE, PDE and maazinique’, IEEE Trans..
Antennas Propagat., Vol. AP-48, pp. 704-712, Ma20

D. Clair, M. Godinat, J. Tourneur, F. MolineE. Louet,” SARGASSES :
Programme de calcul interactif, Simulation Assistéé Représentation
Graphique d’Antennes sur Structufgslournées Internationales de Nice sur les
Antennes (JINA 86), Nice, 4-6 Nov. 1986, pp. 78-81.



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

R.J. Marhefka and W.D. Burnside, “Numericale&tomagnetic Code-Basic
Scattering Code (Version 2), Part I: User ManudBport 712242-14, The Ohio
State University ElectroScience Laboratory, Colus)®Dhio, December 1982.
J.Y. Suratteau,Présentation d’un logiciel de calcul du champ éeuagnétique
interagissant avec un objet de forme complexelodgciel PROMETHEE",
Journées Internationales de Nice sur les Antenhés\(88), Nice, Nov. 8-10,
1988, pp. 66-69.

C. Calnibalosky, G. Leflour, P. Lobat, J-M. rhbard, J-M. Quadri, N.
Vukadinovic, " Electromagnetic Calculation of a whole aircraft tne code
SPECTRE", Journées Internationales de Nice sur les Anten(#slA 90),
Nice, Nov. 13-15, 1990, pp. 83-87.

P.E. Hussar, V. Oliker, H.L. Riggins, E.M. SmRowland, W.R. Klocko and L.
Prussner,”An Implementation of the UTD Faceted CAD Platformodéls,
Antennas and Propagation Magazine, Vol. 42, n©2100-106, April 2000.

H.J. Matmesa, S. Laybros, T. Volpert, P.F. ®esiand P. PitotFERMAT : A
High Frequency EM Scattering Code from Complex $seincluding Objects
and Environment, PIERS Proc. Conf., Pisa (Italy), Mars 2004.

G. Ramiére, “Couplage de méthodes asymptasiguede la technique du lancer
de rayons pour le calcul du champ rayonné par dgstso métalliques 3D
complexes”, These de I'Université Paul Sabatieyldase, Sept. 2000.

S. Laybros, “Utilisation du lancer de rayornsup le calcul de l'interaction d’'un
rayonnement électromagnétique avec des objets ese®l métalliques et
diélectriques”, Thése de I'Université Paul Sabafi@ulouse, Oct. 2004.

J. Pérez, F. Saez de Adana, O. Gutiérrezphz@lez, M.F. Catedra, |. Montiel,
J. Guzman, “FASANT : fast Computer Tool for the alysis of On-Board
Antennas”, IEEE Antennas and Propagation Magaafwé, 41, No. 2, April
1999.

J.P. Adam, Y. Beniguel, “UTD asymptotic codged for antenna inplementation
on electric large structures”, Proceedings’ Iriternational Symposium on
Antennas Technology and Applied Electromagnetias,Malo, June 15-17,
2005.

P.H. Pathak, W.D. Burnside and R.J. Marhefléa,Uniform GTD Analysis of
the Diffraction of Electromagnetic Waves by a SnioGbnvex Surface IEEE
Trans. Antennas Propagat., Vol. AP-23, N° 5, p-632, Sept. 1980.

P.H. Pathak, N. Wang, W.D. Burnside and R.@uyoumjian,”A Uniform
GTD Solution for the Radiation from Sources on an@x Surfacé IEEE
Trans. Antennas Propagat., Vol. AP-29, N° 4, p@-602, July 1981.

H.T. Chou, P.H. Pathak, M. HsUExtended uniform geometrical theory of
diffraction solution for the radiation of antennlasated close to an arbitrary,
smooth, perfectly conducting, convex surfadgadio Science, Volume 32, N° 4,
pp. 1297-1317, July-August 1997.

F. Molinet,"Edge excited waves on convex and concave structukagview',
IEEE Antennas and Propagation Magazine, to appe@ct. 2005.

I.V. Andronov, D. Bouche,’Asymptotics of creeping waves on a strongly
prolate body, Annales des Téléecommunications, Vol. 49, n° 3984, pp. 205-
210.

W.D. Burnside and R.J. Marhefka, “Antenna Hd@vook”, Lo and Lee Editors,
Van Nostrand, 1988.



[43]

[44]

[45]

[46]

[47]

[48]

R.D. Graglia, G. Lombardi;Vector functions for singular fields on curved
triangular elements, truly defined in the parerdcgh 2002 IEEE AP-S/URSI
Conference, San Antonio (Texas), June 15-22, 2002.
E. Jorgensen, J. Volakis, M.O. Breinbjefgligher order hierarchical Legendre
Basis functions for iterative integral equation \&o$ with curvilinear surface
modeling, 2002 IEEE AP-S/URSI Conference, San Antonio (Bgxaune 15-
22, 2002.
0. Cessenat, B. Desprésgpplication of an ultra-weak variational formtien
of elliptic PDE to the 2D Helmholtz problem”, SIANl Num. An. 35 (1), pp.
255-299, 1998.

T. Huttunen, P. Monk, J. Kaipio, “Computatal aspects of the ultra-weak
variational formulation”, JCP 182, pp 27-46, 2002.
G. Tiberi, A. Monarchio, G. Manara, R. Mittr&lybridizing Asymptotic and
Numerically Rigorous Techniques for Solving Eleotagnetic Scattering
Problems using the Characteristics basis Functi@BFs) ", 2003 IEEE
Antennas and Propagation Society International ®wign, URSI Dig.,
Columbus, Ohio, June 22-27 2003, p. 519.
G. Tiberi, S. Rosace, A. Monarchi, G. Manaral &. Mittra,"”Electromagnetic
Scattering from Large Facted Conducting Bodies binyy Analytically-Derived
Characteristic Basis FunctichslEEE Antennas and Wireless Propagation
Letters, Oct. 2003.



