GISM Global Ionospheric Scintillation Model

http://www.ieea.fr/en/gism-web-interface.html

Y. Béniguel, IEEA

•Béniguel Y., P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

Contents

Bias

- Scintillations
- Modelling Results vs Measurements
- Scattering Function Calculation (SAR observations)
- Conclusion
- Positioning errors

Measurement Campaigns

PRIS

Béniguel Y., J-P Adam, N. Jakowski, T. Noack, V. Wilken, J-J Valette, M. Cueto, A. Bourdillon, P. Lassudrie-Duchesne, B. Arbesser-Rastburg, Analysis of scintillation recorded during the PRIS measurement campaign, Radio Sci., Vol 44, (2009), doi:10.1029/2008RS004090

http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=29210

MONITOR

Prieto Cerdeira R., Y. Béniguel, "The MONITOR project: architecture, data and products", Ionospheric Effects Symposium, Alexandria VA, May 2011

MONITOR Extension

On going; start : 30 june 2014

Ionosphere Variability

70 60 60 50 20 latitude © -20 -46 20 -60 10 -150 -100 100 150 longitude

TEC , F10.7 = 150, , date = 1/ 1/2003 , UT = 22.00

TEC Map

S4 map cumulated over 24 hours

Mean Errors (ray technique calculation)

$$n^{2} = 1 - \frac{X}{1 - \frac{Y^{2} \sin \vartheta}{2(1 - X)}} \pm \left[\left(\frac{Y^{2} \sin^{2} \vartheta}{2(1 - X)} \right)^{2} + Y^{2} \cos^{2} \vartheta \right]^{1/2}$$

$$X = \frac{\omega_{P}^{2}}{\omega^{2}} \qquad Y = \frac{\omega_{b}}{\omega}$$

Haselgrove equations (Simplified)

$$\frac{\mathrm{d}\,\mathbf{x}_{\mathrm{i}}}{\mathrm{d}\,\mathbf{t}} = \frac{\mathrm{c}^{2}\,\mathbf{k}_{\mathrm{i}}}{\omega} \qquad \qquad \frac{\mathrm{d}\,\mathbf{k}_{\mathrm{i}}}{\mathrm{d}\,\mathbf{t}} = -\frac{\omega_{\mathrm{P}}}{\omega} \quad \frac{\partial\,\omega_{\mathrm{P}}}{\partial\,\mathbf{x}_{\mathrm{i}}}$$

IEEA

Bias

Range error

$$\Delta L = \frac{\lambda^2 r_e}{2\pi} N_T \qquad N_T = \int_0^z N_e \, ds \qquad \Delta L = \frac{40.3 N_T}{f^2}$$

Faraday rotation

$$\Psi = \frac{e^3}{2\varepsilon_0 c m^2 \omega^2} \int_0^z N_e B \cos\vartheta ds$$

Inputs : Ne ; B at any point inside ionosphere

Example of results / Solar Flux 150

HF Ground to Ground Propagation (Sky Wave)

HF Antenna Pattern as an input

Turbulent Ionosphere (scintillation)

Physical Mechanism

Medium Radar Observations

Observations at Kwajalen Islands Courtesy K. Groves, AFRL Observations in Brazil Courtesy E. de Paula, INPE

The vertical extent may reach hundreds of kilometers

Scintillation on Galileo Satellites L1 vs E5a

Field Propagation Equation

$$E(\rho, z, \omega, t) = U(\rho, z, \omega) \exp\left\{j\left(\omega t - \int \langle k(z')\rangle dz'\right)\right\}$$

The field amplitude value U is a solution of the the parabolic equation

$$2 j k \frac{\partial U(\rho)}{\partial z} + \nabla_t^2 U(\rho) + k^2 \varepsilon_1(\rho) U(\rho) = 0$$

Method of solution : phase screen technique

Field Propagation Equation

Solution of the parabolic equation

$$2 j k \frac{\partial}{\partial z} \langle U(r) \rangle + \nabla_{t}^{2} \langle U(r) \rangle + k^{2} \langle \varepsilon(r) U(r) \rangle = 0$$

$$2 j k \frac{\partial}{\partial z} \langle U(r) \rangle + \nabla_{t}^{2} \langle U(r) \rangle + j \frac{k^{3}}{4} A(0) \langle U(r) \rangle = 0$$

Using the phase index autocorrelation function

$$B(z,\rho) = \langle \varepsilon(\rho_1) \ \varepsilon(\rho_2) \rangle \qquad A(\rho) = \int B(z,\rho) dz$$

Phase Screen Technique

Propagation : 1st & 3rd terms ; scattering : 2nd & 3rd terms

Medium Characterization Index Spectral Density

Medium's Phase Spectrum

3 parameters : σ_{Ne} ; q_0 ; p

One Sample : Intensity

Sample characteristics : S4 = 0.51, sigma phi = 0.11

One Sample : Phase

Sample characteristics : S4 = 0.51, sigma phi = 0.11

Spectrum Parameters

5 days RINEX files considered in the analysis

S4 > 0.2 & sigma phi < 2 (filter convergence)

2 parameters to define the spectrum : T (1 Hz value) & p

Slope spectrum vs time after sunset

Phase variance Time domain vs frequency domain

Medium Characterization (Correlation Function)

Isotropic

1D

Anisotropic

2D Analysis : Isotropic Medium

$$B_{\Phi}(\rho) = \frac{C_{p}}{(2\pi)^{2}} \iint \gamma_{\Phi}(K) \exp(-j\overline{K}.\overline{\rho}) dK$$
$$\longrightarrow [B_{\Phi}(\rho)]_{iso} = \frac{\sigma_{\Phi}^{2}}{2^{(p-4)/2} \Gamma((p-2)/2)} (\rho q_{0})^{((p-2)/2)} K_{((p-2)/2)} (\rho q_{0})$$

$$\sigma_{\Phi}^2 = B_{\Phi}(0) = (\lambda r_e)^2 L L_0 \sigma_{Ne}^2$$

1D Analysis Isotropic Medium

$$B_{\Phi}(\rho) = \frac{C_{P}}{2\pi} \int \gamma_{\Phi}(k) \exp(-jk\rho) dk$$
$$[B_{\Phi}(\rho)]_{1D} = \frac{C_{P}}{2\pi} \frac{\sqrt{\pi}}{2^{(p-3)/2} \Gamma(p/2)} q_{0}^{1-p} (\rho q_{0})^{(p-1)/2} K_{(p-1)/2} (\rho q_{0})$$

1D vs Isotropic

Anisotropic vs Isotropic

Additional geometric factor with respect to the 2D case $G = \frac{ab}{(AC - B^2/4)^{1/2}}$

a, b ellipses axes

A, B, C trigonometric terms resulting from rotations related to variable changes

Phase Synthesis (1D)

$\Phi(\rho) = FFT^{-1}(FFT(u) * \gamma_{\Phi}(k))$

u random number with a uniform spectral density

Done at each successive layer

Numerical Constraints

Frequency band	Medium parameters ⁽¹⁾	Phase variance ⁽²⁾ $\sigma_{\Phi}^2 = (\lambda r_e)^2 \Delta z L_0 \sigma_{Ne}^2$	Aliasing ⁽³⁾ $L > \frac{z \lambda \sigma_{\Phi}}{L_0 \sqrt{2}}$	Propagation $\Delta z < \frac{2L\Delta x}{\lambda}$
P 450 MHz	$L_0 = 500m.$ $N_e = 10^{12} el/m^3$ RMS = 20 %	σ_{Φ}^2 = 1.41 (σ_{Φ} = 1.19)	L > 282 m. z=3.1 $\emptyset; \sigma_{\Phi} = 1$	$\Delta z < 25 \text{ km}$ $L = 2500 \text{m}.$ $\Delta x = 3.3 \text{m}.$
L 1.5 GHz	$L_0 = 500m.$ $N_e = 10^{12} el/m^3$ RMS = 20 %	$\sigma_{\Phi}^2 = 0.12$ ($\sigma_{\Phi} = 0.36$)	L > 85 m. z=3.1 ϑ ; σ_{Φ} =1	$\Delta z < 122 \text{km}$ L = 2500 m. $\Delta x = 4.88 \text{m}.$ (FFT :1024 pts)
S 2.5 GHz	$L_0 = 500m.$ $N_e = 10^{12} el/m^3$ RMS = 20 %	$\sigma_{\Phi}^{2} = 0.05$ $(\sigma_{\Phi} = 0.22)$	L > 51 m. $z=3.1$ $\sigma_{\Phi}=1$	$\Delta z < 203 \text{km}$ L = 2500 m. $\Delta x = 4.88 \text{m}.$ (FFT :1024 pts)

Sub Models (1 / 2) Seasonal Dependency

(Low Latitude Scintillations)

Scintillation Events Histograms

Scintillation Events / Lima 2012

Measurements in Malindi, Kenya

Measurements in Burkina Fasso

Koudougou (Burkina Fasso) Geographic Latitude : 12°15 / Magnetic Latitude : -1°14

Sub Models (2/2)

Local Time Dependency

(Low Latitude Scintillations)

One week of measurements in Guiana

Intensity standard deviation (S4)

S4 all satellites days 314 to 319 / year 2006

Local time : post sunset hours (CLS measurements, PRIS Campaign)
Checking Results

➤ Indices

- Inter frequency correlation
- Probability of intensity
- Fades distribution
- Loss of Lock

Medium Characterisation

Mean Effects (Sub Models)

NeQuick, Terrestrial Magnetic Field (NOAA)

Geophysical Parameters

SSN, Medium Drift Velocity

LT & Seasonal dependency

Scintillations (Fluctuating medium)

Spectrum slope (p), BubblesRMS, OuterScale (L_0) Anisotropy ratio

Numerical Implementation

The model includes an orbit generator (GPS, Glonass, Galileo, ...)

Inputs

- Medium Characterisation
- **Geophysical Parameters**
- Scenario
- Intermediate calculation : LOS, Ionisation along the LOS

Outputs

Scintillation indices Correlation Distances (Time & Space) Scattering function

IEEA

Signal at receiver level

Modelling vs Measurements (Intensity)

S4 all satellites

Cayenne days 314 to 319 : year 2006 1 PRN2 PRN13 \diamond PRN10 0.8 PRN4 × PRN24 0.6 **Measurements** S4 **PRN12** PRN8 0.4 PRN29 PRN26 0.2 PRN6 Cayenne day 314 / 2006 GISM 0 -40 -20 20 40 60 80 0 100 1 13 LT \diamond 23 V 27 0.8 \times 8 17 0.6 **\$** 10 Modelling 24 0.4 29 2 0.2 5 6 0 18 19 20 21 22 23 24 25 LT African School on Space Science – Kigali, Rwanda – 30 june 2014 – 11 july 2014

Modelling vs Measurements (Phase)

Sigma Phi all satellites Cayenne, days 314 to 319 / year 2006 The phase RMS value is PRN2 PRN13 0 slightly lower than the S4 PRN10 0.8 PRN4 value Sigma Phi (radian) PRN24 0.6 **Measurements PRN12** 0.4 PRN8 PRN29 PRN26 0.2 PRN6 nne day 314 / 2006 0 GISM -20 20 -40 0 40 80 100 60 1 LT 13 0 23 27 0.8 8 17 0.6 Sigma phi Modelling 10 24 0.4 29 Some samples exhibit high 2 values (both measurements 0.2 5 and modelling) due to the 6 0 phase jumps 18 19 20 21 22 23 24 25 LT African School on Space Science – Kigali, Rwanda – 30 june 2014 – 11 july 2014

Scintillation Modelling vs Measurements

Measurements

Modelling

Scintillation Index Dependency on Frequency

using Yuma files

Global Maps

TEC Map Modelling

Scintillation Map Modelling

Inter Frequency Correlation

Weak scintillations vs strong scintillations

Inter Frequency Correlation Time Using 1 week of measurements in Tahiti

Frequency Correlation (Modelling)

Weak scintillations

Strong scintillations

Loss of Lock

Probability of Loss of Lock

Loss of Lock when $\sigma_{\!\scriptscriptstyle \varphi}$ > threshold value

The phase noise is related to the Intensity of the received signal

$$\sigma_{\Phi T}^{2} = \frac{B_{n}}{(c/n_{0}) I} \left[1 + \frac{1}{2\eta (c/n_{0}) I} \right]$$

p(I) Nakagami distributed

Probability of Loss of Lock is $p(\sigma_{\phi}) >$ threshold value

Loss of Lock (Measurements in Tahiti)

Loss of Locks L2 / strong scintillations

Loss of Lock Measurements vs Modelling

3 days of analysis in Tahiti

Geographical Extent

Simultaneous Scintillation

Number of Satellites Simultaneously Corrupted by Scintillation

Probability of intensity / Modelling

African School on Space Science – Kigali, Rwanda – 30 june 2014 – 11 july 2014

IEEA

Fades Statistics

Example of equatorial scintillation in Ascension Island, in solarmax conditions (2001)

Probability of intensity / Modelling

Nakagami vs measurements

Radar Observations

Mutual Coherence Function

Correlation distance vs LSAR

Ionosphere Effects

Two Points - Two Frequencies Coherence Function

$$\Gamma(z, k_1, k_2, \rho_1, \rho_2) = \langle U_1(z, k_1, \rho_1) U_2^*(z, k_2, \rho_2) \rangle$$

Using the parabolic equation

$$\left[\begin{array}{ccc} \frac{\partial}{\partial z} & - & \frac{j}{2} \frac{k_{d}}{k_{0}^{2}} \nabla_{d}^{2} & + & \frac{k_{p}^{4}}{8 k_{0}^{2}} \left[\begin{array}{c} \frac{k_{d}^{2}}{k_{0}^{2}} & A_{\xi}(0) & + & D_{\xi}(\rho) \right] \right] \Gamma(k_{d}, z, \rho) = 0$$

The structure function $D_{\Phi}(z,\rho) = 2[B_{\Phi}(0) - B_{\Phi}(\rho)]$ is quadratic with respect to the distance

Same process than previously : propagation 1st & 3rd terms ; Diffraction : 2nd & 3rd terms

Two Points - Two Frequencies Coherence Function

$$\Gamma(z, k_1, k_2, \rho_1, \rho_2) = \langle U_1(z, k_1, \rho_1) U_2^*(z, k_2, \rho_2) \rangle$$

Solution (one single screen)

Scattering \rightarrow 2 constants

$$\mathbf{B} = \frac{\sigma_{\Phi}^2}{2\,\omega^2}$$

S =
$$\sigma_{\Phi}^2 (L_1)^2 \frac{\text{Log}(L_0 / \ell_i)}{6L_0^2}$$

Propagation \rightarrow 1 constant

$$P = \frac{1}{2 c k^{2}} \left(\frac{1}{L_{1} + L_{2}} - \frac{1}{L_{1}} \right)$$

* Nickisch, RS 92, Knepp & Nickisch, RS, 2010 African School on Space Science – Kigali, Rwanda – 30 june 2014 – 11 july 2014

One Single Screen

Analytical solution

Spreading Extent

Rogers, N., P. Cannon, and K. Groves, Measurements and simulations of ionospheric scattering ੴn ℃HF and UHF radar signals: Channel scattering function, Radio Sci., 44, RS0A33, DOI: 10.1029/2008RS004033, 2009.

Analytic vs Numerical

Several Screens Refined Analysis

> The algorithm can easily be generalized

Different statistical properties may be assigned to the different layers

> Numerical FFT (1D) shall be performed to get the coherence function

Ambiguity Function

$$\chi$$
 (r,r₀) = $\sum_{n} \int g_{n}(t,r_{n}) f_{n}^{*}(t,r_{0n}) dt$

 $g_{\rm n}$ is the received signal and $\ f_{\rm n}$ is the matched filter

$$\chi_{n} (\mathbf{r}_{n}, \mathbf{r}_{0n}) = \frac{1}{(4\pi \mathbf{r}_{n})^{2}} \exp(j \Phi_{0}) \int \exp(-j (\omega - \omega_{0}) \Phi_{1} - (\omega - \omega_{0})^{2} \Phi_{2}) d\omega$$

Value of Coherent field received

$$\langle \chi(\mathbf{r},\mathbf{r}_{0}) \rangle = \frac{\exp(-\sigma_{\Phi}^{2})}{(4\pi r_{0})^{2}} \int_{-\text{Le}/2}^{\text{Le}/2} \exp\left(2jk_{0}\left(\mathbf{r}_{0} + \frac{\rho^{2}}{2r_{0}}\right)\right) d\rho = \frac{\exp(-\sigma_{\Phi}^{2})}{(4\pi r_{0})^{2}} \sin c\left(k_{0} \rho L_{e}/r_{0}\right)$$

An attenuation factor on the coherent component is included

Coherent Length

It is given by function $\Gamma (\omega_d, \rho, r) = \sqrt{\frac{D}{S}} \exp \left(-B \omega_d^2 - D (\rho / r_0)^2\right)$

Positioning Errors

Modelling

S4 measured for each tracked satellite

 σ_{τ} is calculated taking the thermal noise as the main contribution

Range error calculated assuming a gaussian distribution

GPS constellation simulated with a yuma file

GPS Positioning Errors

African School on Space Science – Kigali, Rwanda – 30 june 2014 – 11 july 2014

Positioning errors from Measurements in Brazil in 2001

Conclusion

Reasonable agreement between modelling (GISM) and measurements

> Positioning errors due to scintillations may reach values up to 50 meters

> The azimuthal resolution of a SAR may be significantly decreased

All results will be updated taking measurements campaign data into account

