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Abstract— This paper deals with the problem of HF surface 
wave radar. The goal is to integrate in a unique tool the antenna 
radiation and the propagation calculations in order to make the 
analysis consistent.  
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I.  INTRODUCTION 

This paper addresses the problem of the surface wave (SW) 
radar1. This kind of radar, usually operating in the HF band, 
has a growing interest in many applications, in particular for 
the survey of the coastal maritime sectors. Contrary to the sky 
waves, also radiated by a HF radar, the surface or ground 
waves decay as the square root of the distance to the source. 
As a result, and with a reasonable transmitted power, the 
signal can be propagated over hundreds of kilometers. Such a 
propagation mode complements the sky wave pattern of HF 
radars, which shows a blind zone up to the first ionosphere 
reflection distance.  
 

To fully characterize the problem, both the antenna 
characterization and matching, the near field pattern and the 
propagation problem have been addressed. The antenna 
current distribution has been calculated using the integral 
equation technique [1]. Two numerical approaches to properly 
take the interface into account were developed concurrently. 
One advantage of the technique is to isolate the ground wave 
contribution and estimate the related radiated power. Once the 
current distribution is found, the near field and the far field 
pattern (including the ground wave contribution) can be 
obtained.  

Another approach to the antenna problem consists in using a 
near field - far field transformation using measurements. An 
HF antenna is usually located above the ground and may reach 
dimensions up to 15 m height. As the ground interface is part 

                                                           
1 This study has been carried out in the frame of the 
PROPHETE project under funding of the French Research 
National National Agency (ANR) 

of the radiating structure, this puts some constraints on the 
measurement setup. Specific equipment is being studied for 
this purpose. The measurements will be performed using a 3D 
electric probe moved over a virtual cylindrical surface 
containing the antenna. The location of the sensor will be 
simultaneously recorded at each measurement point. The 
corresponding virtual magnetic currents distribution will allow 
calculating the field radiated at any point in the outer space. 
Those measurements will be tested firstly on a 1 GHz scale 
model and then applied to the actual HF antenna. 
 

The ground wave propagation over an irregular, 
inhomogeneous terrain can be derived using the parabolic 
equation. The problem is an initial value problem with the 
ground wave field contribution acting as a driver, as the sky 
wave has no contribution in the interface plane. Two 
techniques were developed concurrently. The first one uses the 
classical split step technique while the second uses a finite 
difference scheme.  
 

These different points are briefly commented in the 
following sections. 

II. THE ANTENNA PROBLEM 

 
As derived by Michalski [2], there are three different ways to 
write the Lorentz gauge relationship in order to meet the 
boundary conditions on the interface. Although equivalent 
from a theoretical point of view, his formulation C is the most 
convenient as regards its numerical implementation. This 
formulation has been used in the present development. With 
respect to the Electric Field Integral Equation (EFIE), the new 
equation, named Mixed Potential Integral Equation (MPIE), 
includes additional terms to take the Green’s function 
modification into account. 
 
The MPIE integral terms all involve the so-called Sommerfeld 
integrals. Two techniques can be used for their numerical 
evaluation, either the Phase Stationary Technique (PST) or the 



Complex Image Technique (CIT). These two techniques have 
been developed concurrently. 
 
The phase stationary technique is the classical one. It consists 
in finding the steepest descent contour in the kρ complex 
plane. This contour has branch cuts as the function to integrate 
has branch points. The complex image technique [3-4] takes 
benefit from the easiness to consider images in a method of 
moments procedure. The aim of the calculation consists in 
representing the MPIE integral terms by a sum of terms, each 
of them being amenable to a Weyl like integral term. The 
integration is performed in the kz complex plane. The 
integration contour is linear in this plane. Figure 1 shows a 
comparison of the Ez contribution of a vertical Electric Dipole 
(VED) obtained with the two techniques. The agreement is 
excellent. 

 
Figure 1 : Comparison of the electric field vertical component 
contributions due to a vertical dipole obtained with the phase 
stationary and the complex image technique 

 
In addition to the contour contribution, the result shall 
integrate the poles contribution. The corresponding terms are 
the surface wave radiated by the HF antenna. 

 
Again, the comparison between the two techniques has been 
performed. For the phase stationary technique, none of the 
poles are located inside the integration contour. However they 
are very close to it. As a result in order to make the calculation 
numerically tractable, it is necessary to remove their 
contribution in the integrand to get a regular function. It is 
subsequently reintroduced and calculated separately. This is 
the so-called modified saddle point calculation technique. For 
the complex image technique, all poles of the function should 
be included irrespective to their sign. They are considered by 
pairs. The comparison is shown in figure 2.  
 

 
Figure 2 : Comparison of the electric field vertical component 
contributions due to the pole contribution for a vertical dipole 
obtained with the phase stationary and the complex image 
technique 
 
Summary 
 
For its implementation in a method of moments code, the 
Sommerfeld integral terms should give accurate results 
whatever the problem parameters such as the frequency, the 
distances and the electrical medium parameters are. To this 
respect, the complex image might be the most convenient 
technique, as accurate developments can be used for the 
critical values in the integration complex plane, namely when 
kρ and ρ tend to zero. 
 
For the surface wave contribution, an analytical solution 
involving the error function, can be derived using the modified 
saddle point technique. 
 
One example of results is presented hereafter using the 
software developed [2]. The case considered is a typical 
biconical antenna of 7 meters height placed on the ground 
(relative dielectric constant 15 and conductivity 0.05 S / m). 
The calculation provides the VSWR, the currents and the 
fields (near field, far field and ground wave). The antenna 
current distribution is shown in Fig. 3. 

 

 
Figure 3 : Currents distribution on the HF antenna 

 
Figure 4 shows the near field pattern on a cylindrical surface 
containing the antenna. The major contribution comes from 
the ground wave. It decreases very rapidly with the altitude 
and as the inverse of the square root of the radial distance to 
the antenna for an observation point at the air ground 
interface. 



 
Electric Field Magnitude (V / m) 

 
Figure 4 : The near field radiated by the antenna on a 
cylindrical surface of radius 100 meters with the antenna at its 
base centre. 

 

III.  NEAR-FIELD TO FAR-FIELD (NF/FF) TRANSFORMATION IN THE 

HF BAND 

The proposed method is based on a source identification 
assuming that the antenna under test (AUT) can be replaced 
by a set of equivalent dipoles radiating the same far-field as 
the AUT. This approach, based on the equivalence principle, 
has been already described by several authors [3]. 
Nevertheless, the innovative point brought by this new method 
is the use, as dipole’s radiation functions, of the analytic 
formulations developed by Norton and extended by Bannister 
[4] to the very near field zone. These formulations comprise 
the sky wave, which is the sum of the direct and reflected 
waves, as well as the surface wave contribution of the 
electromagnetic field radiated by each elementary dipole. 

A. Description of the method 

Consider an AUT located at the plane horizontal interface 
between air and real ground. The components of the 
electromagnetic field are measured in the near-field zone (in 
order to acquire the surface wave) on a virtual surface SM 
surrounding the AUT (Fig. 5). The number of measured points 
is NM. Consider now a second virtual surface SD, included 
inside the surface SM (Fig. 5). The number of mesh points is 
ND. At each point, three elementary electric dipoles are 
arranged in order to form an orthogonal basis aligned with the 
cylindrical basis vectors. The method states that, at each point 
of the surface SM, the electromagnetic field, is equal to the sum 
of all the contributions coming from each of the 3ND dipoles 
distributed over surface SD. This leads to the following matrix 
equation: 

 
(1)

where  and  denote the electric and magnetic vectors 
of size 3NM, measured at each point on the surface SM. DE and 
DH are respectively the electric and magnetic radiation 
matrices (issued from the Norton/Bannister formulations), of 
size 3NM x 3ND, concerning the 3ND electric (horizontal and 
vertical) dipoles located at each point of the surface SD. PSD is 
the unknown vector, of size 3ND, containing the electric 
moments of the previous dipoles. 

 

Figure 5: Geometry corresponding to the method. 

Equations (1) can be solved by inversion of the matrix  in 

order to compute the vector PDS. The accuracy of the inversion 
depends on the actual number of dipoles contributing to the 
radiation. More precisely, the idea is to unselect the dipoles 
that have a non-significant contribution to the total field. To 
achieve that goal, this inversion is carried out by applying the 

singular value decomposition (SVD) to the matrix  

associated with a threshold power criterion (Fig. 6). 

 

Fig. 6 Power radiated by the equivalent dipoles vs. singular 
values. 

 

This criterion is linked to the total power radiated by the 
AUT, in the near field zone, and is calculated from the 
measurement of the electromagnetic field on surface SM. Then, 
the singular value matrix is scanned and truncated by 
decreasing order until the corresponding calculated power 
reaches this power criterion. Once the vector PSD is 
determined, the electric far field can be easily computed. In 
order to perform the SVD, we need to know both the electric 
and magnetic fields. However, to avoid measuring the 
magnetic field, it is possible to approximate it, based on the 
plane wave assumption, and still apply the power criterion. 

B. Results 

Let us consider a quarter-wave monopole working at 
10 MHz and located above moist soil (εr = 13 and 
σ = 0.05 S.m-1). The near-field data are obtained from CST 
MWS. Fig. 7 shows the amplitude and phase of the electric 
field extracted from CST MWS and the one calculated thanks 
to the NF/FF transformation. As we can see, the electric near 
field is well reconstituted. 



  

(a) (b) 

 

Fig. 7. Electric near field over a generating line of the 
cylinder: (a) magnitude, (b) phase. 

Now, we discuss about the far field results. Unfortunately, 
CST MWS does not take into account the surface wave in the 
far field zone, but the results obtained by means of the SVD 
method have already been compared to the results obtained 
with NEC/SOMNEC [5-6] and are satisfactory. Eθ is the far 
field component of the electric field determined after a SVD 
considering both electric and magnetic near fields, and Eθ’  is 
the far field component of the electric field determined after 
the SVD, from the electric near field only. At a distance of 10λ 
from the antenna, we can see in Fig. 8 that the surface wave 
(θ ≈ 90 °) is predominant [6]. But at 100λ from the antenna, 
the sky wave is predominant, and reaches its maximum 
magnitude at θ ≈ 70 ° (Fig. 9).  

 

 
Fig. 8. Radiated electric field at 10λ. 

 

 
Fig. 9. Radiated electric field at 100λ. 

 
The two radiation patterns depicted in Fig. 8 and Fig. 9 

have a shape which evolves with respect to the distance as 
expected, and it can be concluded that the SVD method is 
accurate enough in order to compute the radiated far field 
thanks to the sampled data of the electric near field, only. 

 

IV.  PROPAGATION 

 
Two techniques have been developed to address the 

propagation problem. The first one uses a multiple phase 
screen technique while the second one uses a finite difference 
technique. This double approach was implemented in order to 
allow cross checking of the results. The main points of each 
one of the two techniques are commented hereafter. 

The two techniques are based on a resolution of the 
parabolic equation. This equation is obtained from the 
Helmholtz equation, assuming that the field variation along 
the line of sight (LOS) is weak as compared to its variation in 
the plane transverse to this direction. This hypothesis, referred 
as the paraxial approximation, is only valid for angles with the 
LOS lower than about 15°. This equation was used in the two 
approaches developed. The main features, namely the source 
term, the boundary conditions and the algorithm are presented 
for the two techniques. In the two cases the algorithm is a 2D 
algorithm, marching on in space from the source location to a 
given observation point. The field is calculated on vertical 
lines with respect to the mean tangent plane. 

The initial field, on the first vertical, is deduced from the 
antenna analysis problem. It shall be noticed that only the 
surface wave shall be considered as it can be demonstrated 
that the sky wave has no contribution in the air - ground 
interface plane. The antenna analysis integral equation 
technique allows isolating this contribution. In principle either 
the SW near field radiated by the antenna or the far field 
expression of the SW can be used as inputs, in this last case 
using a Fourier inverse transformation to get the equivalent 
aperture source. The near field calculation is however found to 
be the most accurate as the SW far field involves the large 
argument approximation of the Hankel function, this condition 
is not obviously met in the HF domain.   

The multiple phase screen technique takes advantage of 
the fact that the parabolic equation reduces to an ordinary 
differential equation when using a Fourier transformation from 
the space domain to the kz domain where kz is the vertical 
component of the wave number. The algorithm alternates 
consequently two calculations at each space step : the Fourier 
transform calculation and the differential equation calculation. 
The first one allows considering the scattering effects and the 
second one the field modification due to the propagation along 
the LOS. There remains the problem of the boundary 
conditions. On the upper altitude of the space domain, an 
absorbing boundary condition shall be implemented as no 
field shall be reflected. This is done using an apodisation 
function. At the air - ground interface, the Leontovich 
conditions are implemented. Following Dockery & Kraig [7], 
a complementary function has been used allowing to 
implicitly meet the boundary conditions. This is facilitated by 
using sine Fourier transforms. The overall algorithm is very 
efficient allowing considering arbitrary terrain profiles and 
ground impedance discontinuities. The CPU time is very 
small, typically a few tenths of seconds for a wave 
propagation over 300 kilometers.  

 



 

Figure 10 : HF propagation; impedance discontinuity at 
86 km 

Figure 10 shows an example of the field attenuation in a 
2D window calculated using the MPS technique. The profile 
has an impedance discontinuity 86 km away from the source. 
After this distance the propagation, which was previously over 
land, is over sea. The field attenuation at the air – ground 
interface is shown on Figure 15. 

The finite difference technique on the other hand uses a 
centre finite difference scheme as shown on Figure 10. In this 
case, the center point is located between two vertical lines. 
This scheme leads to a tridiagonal matrix.  

 

Figure 10 : Finite differences scheme 

The upper boundary condition is an adaptation of the PML 
first introduced by Berenger [8]. An efficient way to introduce 
the PML in the FD grid is to use stretched coordinates [9] in 
the vertical direction. Such an approach allows deriving the 
equation to be solved into the PML region. To test the validity 
of the implementation, a 10 layers PML medium and a 
parabolic profile of conductivity were considered. A Gaussian 
bunch of rays is launched with a tilted angle in the direction of 
the PML (upper boundary direction) chosen according to the 
narrow angle parabolic equation limitation (about 10 degrees). 
The result plot on Figure 11 shows that there is no reflection 
on the upper boundary. 
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Figure 11: Simulation of a beam launched towards a PML 

boundary condition. 

The lower boundary condition implements, as in the MPS 
technique, the Leontovich condition. In addition the ground 
surface roughness can be super imposed on the profile. Two 
techniques have been developed to do this. The first one 
consists in the generation of a white noise, making a Fourier 
transform, filtering and coming back in the spatial domain. 
The characteristics of the filter have to be chosen in agreement 
with some statistical parameters of the real ground: correlation 
length and root square means of the height. Figure 12 shows 
two realizations with two different correlation functions. 
 

 
Figure 12 : Results of the statistical methods: Exponential 
white noise filtering (left panel), Gaussian white noise filtering 
(right panel) 
 
 
The second technique uses a fractal model. The Diamond 
square approach has been adapted to model the surface. The 
terrain roughness can be controlled by means of a given 
parameter, named h as shown on Figure 13 
 

 
Figure 13 : Surface roughness realization using a fractal 

technique 
 
Figure 14 shows an example of propagation in a 2D window 
using a profile extracted from a fractal surface realization. 
 

 

Figure 14 : Propagation over an irregular surface 

 

 



Comparison of results obtained with the MPS and the FD 
techniques 

The consistency between the results provided by the two 
approaches have been cross checked with respect to a classical 
problem, namely the one exhibiting the Millington effect 
showing a recovery of the field strength after crossing a 
discontinuity (cf Figure 15). The agreement between the 
results is excellent. 

 

Figure 15 : Field propagation on a terrain with an 
impedance discontinuity 

V. DOPPLER EFFECT / PROPAGATION OVER THE SEA  

 
One of the study objectives was to model the propagation over 
the sea. As the sea models are based on physical 
considerations, such a model (JONSWAP) based on the 
directional spectrum of the sea has been included in the 
software. It strongly depends on the wind direction and 
strength (Beaufort). It is able to represent the effect of the sea 
deformation due to the gravity waves. An obtained realization 
of the sea surface is shown on Figure 16.  

 
Figure 16 : Sea surface modelling 
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Figure 17 : Sea profile 

To perform the Doppler calculation, a profile is extracted from 
the realization shown on Figure 17. This profile, shown on 
Figure 17 is introduced in the parabolic equation software. 
Different realizations are considered at successive times. The 
backscattered field is then computed at the operating 
frequency. The integration on a long observation time of the 
moving sea gives the Doppler spectrum computed by 
expression : 

S( f ) = Es(t)e
− j 2π ft dt

0

Tobs

∫
2

  
(2) 

 
Figure 18 : Observed spectrum for the following set of input 

data :f=15 MHz, λS =10m, dt=0.25s, Tobs=50s, u=3 m/s 

fd=0.3 Hz 
This calculation provides the Doppler spectrum 

components as expected. 

VI.  CONCLUSION 

Many innovative points have been considered in this study 
aiming to develop a global tool allowing addressing the 
antenna plus surface wave propagation problem. At each step 
of the study two calculations and / or measurements 
techniques were developed concurrently giving full 
confidence in the obtained results. 
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